
Level Money Contracts
Security Review

Cantina Managed review by:
Mario Poneder, Security Researcher
Om Parikh, Security Researcher
Delvir0, Junior Security Researcher

November 12, 2024

Contents
1 Introduction 21.1 About Cantina . 21.2 Disclaimer . 21.3 Risk assessment . 21.3.1 Severity Classification . 2
2 Security Review Summary 3

3 Findings 43.1 High Risk . 43.1.1 Insufficient slippage protection in mintlvlUSD . 43.1.2 USDT cannot be withdrawn from AaveV3YieldManager 43.1.3 DoS due to not accepting native ETH transfer . 53.1.4 Inability to claim various protocol rewards due to missing implementation 53.2 Medium Risk . 63.2.1 No slippage protection in mintlvlUSD in case of matching decimals 63.3 Low Risk . 73.3.1 Conflicting method permissions . 73.3.2 Ineffective role seggregation in LevelBaseReserveManager 73.3.3 The maxSlippageThresholdBasisPoints could exceed 100% 83.3.4 Treasury rake might not be taken due to rounding direction 83.3.5 Conflicting decimals handling . 83.3.6 Excessive use of whenNotPausedmight block withdrawals 93.4 Informational . 103.4.1 Superfluous granting of DEFAULT_ADMIN_ROLE in AaveV3YieldManager 103.4.2 Insufficient wrapper type checking . 103.4.3 Unused storage variable in LevelEigenlayerReserveManager.sol 113.4.4 Outdated version of openzeppelin is used with potential security advisories 11

1

1 Introduction

1.1 About Cantina
Cantina is a security servicesmarketplace that connects top security researchers and solutionswith clients.Learn more at cantina.xyz
1.2 Disclaimer
CantinaManagedprovides a detailed evaluation of the security posture of the code at a particularmomentbased on the information available at the time of the review. While CantinaManaged endeavors to identifyand disclose all potential security issues, it cannot guarantee that every vulnerability will be detected orthat the code will be entirely secure against all possible attacks. The assessment is conducted based onthe specific commit and version of the code provided. Any subsequent modifications to the code mayintroduce new vulnerabilities that were absent during the initial review. Therefore, any changes madeto the code require a new security review to ensure that the code remains secure. Please be advisedthat the Cantina Managed security review is not a replacement for continuous security measures such aspenetration testing, vulnerability scanning, and regular code reviews.
1.3 Risk assessment

Severity Description

Critical Must fix as soon as possible (if already deployed).

High Leads to a loss of a significant portion (>10%) of assets in the protocol, or sig-nificant harm to a majority of users.

Medium Global losses <10% or losses to only a subset of users, but still unacceptable.

Low Losses will be annoying but bearable. Applies to things like griefing attacks thatcan be easily repaired or even gas inefficiencies.

Gas Optimization Suggestions around gas saving practices.

Informational Suggestions around best practices or readability.
1.3.1 Severity Classification

The severity of security issues found during the security review is categorized based on the above table.Critical findings have a high likelihood of being exploited and must be addressed immediately. High find-ings are almost certain to occur, easy to perform, or not easy but highly incentivized thus must be fixedas soon as possible.
Medium findings are conditionally possible or incentivized but are still relatively likely to occur and shouldbe addressed. Low findings a rare combination of circumstances to exploit, or offer little to no incentiveto exploit but are recommended to be addressed.
Lastly, some findings might represent objective improvements that should be addressed but do not im-pact the project’s overall security (Gas and Informational findings).

2

https://cantina.xyz

2 Security Review Summary

Level is the first delta-neutral synthetic dollar with first-loss protection.
From Oct 23rd to Oct 30th the Cantina team conducted a review of level-money-contracts-1022 oncommit hash fbd857ff. The team identified a total of 15 issues in the following risk categories:

• Critical Risk: 0
• High Risk: 4
• Medium Risk: 1
• Low Risk: 6
• Gas Optimizations: 0
• Informational: 4

3

https://github.com/cantina-forks/level-money-contracts
https://github.com/cantina-forks/level-money-contracts/tree/fbd857ffdd7505aadaf17bb67d6bea5d9c27a91c/

3 Findings

3.1 High Risk
3.1.1 Insufficient slippage protection in mintlvlUSD

Severity: High Risk
Context: LevelBaseReserveManager.sol#L215-L219
Description: In the mintlvlUSDmethod, the minimum lvlUSDAmount (slippage protection) is overwrittenby the allowed slippage amount leading to a negligibly low minimum lvlUSDAmount, which can causepotential losses for the receiver / collateral provider.
The mintlvlUSD method of the LevelBaseReserveManager contract is responsible to create and submit a
MINT order to the LevelMinting contract to mint the appropriate amount of lvlUSD for the given amountof collateral.
This order includes a minimum lvlUSDAmount which serves as a slippage parameter ensuring that thereceiver / collateral provider is not at a loss due to an unexpectedly low amount of minted lvlUSD.
Of course, one cannot always expect full 1:1 minting therefore an amount proportional to maxSlippageTh-

resholdBasisPoints is intended to be the allowed slippage:
// Apply max slippage threshold

lvlUSDAmount = lvlUSDAmount.mulDiv(

maxSlippageThresholdBasisPoints,

MAX_BASIS_POINTS

);

However, instead of subtracting the allowed slippage amount from the minimum lvlUSDAmount, it is over-written by this small amount effectively eliminating the slippage protection.
Impact: Having a negligibly low minimum lvlUSDAmount exposes the receiver / collateral provider to amaximum slippage risk in terms of minted lvlUSD vs. provided collateral, which can turn out to be asevere loss.
Likelihood: With maxSlippageThresholdBasisPoints initially being set to 5 (5 bps = 0.05%), every call to
mintlvlUSD is subject to a full slippage risk.
Recommendation: It is recommended to subtract the slippage amount from lvlUSDAmount to arrive atthe desired minimum lvlUSDAmount:

// Apply max slippage threshold

- lvlUSDAmount = lvlUSDAmount.mulDiv(

+ lvlUSDAmount -= lvlUSDAmount.mulDiv(

maxSlippageThresholdBasisPoints,

MAX_BASIS_POINTS

);

Level: Fixed in PR 25.
Cantina Managed: Fixed.
3.1.2 USDT cannot be withdrawn from AaveV3YieldManager

Severity: High Risk
Context: LevelEigenlayerReserveManager.sol#L70, AaveV3YieldManager.sol#L92,AaveV3YieldManager.sol#L104
Description: USDT can only be deposited into but not withdrawn from the AaveV3YieldManager contractdue to the implementation of USDT which is not fully ERC20-compliant.
The AaveV3YieldManager is intended to handle USDC & USDT (more to be added in the future) for interestaccrual by supplying them as collateral to AAVE and wrapping the resulting rebasing & interest-accruingtokens.

4

https://cantina.xyz/code/decf630d-b084-4490-8f13-ee6af4dec2bc/src/reserve/LevelBaseReserveManager.sol#L215-L219
https://github.com/Level-Money/contracts/pull/25
https://cantina.xyz/code/decf630d-b084-4490-8f13-ee6af4dec2bc/src/reserve/LevelEigenlayerReserveManager.sol#L70
https://cantina.xyz/code/decf630d-b084-4490-8f13-ee6af4dec2bc/src/yield/AaveV3YieldManager.sol#L92
https://cantina.xyz/code/decf630d-b084-4490-8f13-ee6af4dec2bc/src/yield/AaveV3YieldManager.sol#L104

However, the withdrawmethod relies on IERC20.transfer which expects a bool return value that Solidityis trying to decode even though the return value is not checked, while USDT.transfer does not implementa return value. Consequently, any attempt to withdraw USDT using this method will result in a revert.
function withdraw(

address token, // e.g. USDT

uint256 amount

) external {

address aTokenAddress = underlyingToaToken[token];

address wrapper = tokenToWrapper[aTokenAddress];

IERC20(wrapper).safeTransferFrom(msg.sender, address(this), amount);

_unwrapToken(wrapper, amount);

_withdrawFromAave(token, amount);

IERC20(token).transfer(msg.sender, amount); // IERC20.transfer expects bool return value

}

Impact: USDT cannot be withdrawn from the AaveV3YieldManager contract breaking the protocol's in-tended flow of funds. Unwrapping & withdrawal from AAVE has to be processed manually instead.
Likelihood: USDT is fully intended to be used with the AaveV3YieldManager contract.
Recommendation: It is recommended to always rely on the SafeERC20 library instead of calling transfer,
transferFrom & approve of ERC20 tokens directly.
This recommendation applies to all three instances attached to this finding.
Level: Fixed in PR 25 and PR 26.
Cantina Managed: Fixed.
3.1.3 DoS due to not accepting native ETH transfer

Severity: High Risk
Context: LevelBaseReserveManager.sol#L26
Description: When depositing into underlying restating protocol, which is either vault or strategy whichdelegates to operator. If strategy / vault supports native restating or accrues rewards in ETH then contractwill revert whenwithdrawing from such strategy / vault because it doesn't implement receive or fallbackfunction.
The protocol correctly implements transferEther to remove the ETH out of contract once it is redeemedby reserve manager.
Recommendation: - Add receive / fallback with appropriate access control to accept ETH whereverrequired. If protocol doesn't want to interact with any currently deployed or future vault / strategieswhich can potentially transfer eth then they should document this explicitly.
3.1.4 Inability to claim various protocol rewards due to missing implementation

Severity: High Risk
Context: (No context files were provided by the reviewer)
Description: The current implementation lacks mechanisms to claim various rewards that accrue to theprotocol from different sources. This affects:

• Aave Protocol Rewards:
– Staked AAVE tokens rewards.
– Chain-specific incentive campaign rewards (ARB, OP, ZKSYNC tokens).
– Protocol integration specific incentives (e.g., SNX incentives for providing sUSD).
– Other protocol-specific rewards.

• Reserve Manager Contract Rewards:
– EigenLayer rewards.

5

https://github.com/Level-Money/contracts/pull/25
https://github.com/Level-Money/contracts/pull/26
https://cantina.xyz/code/decf630d-b084-4490-8f13-ee6af4dec2bc/src/reserve/LevelBaseReserveManager.sol#L26
https://docs.eigenlayer.xyz/eigenlayer/rewards-claiming/rewards-claiming-overview

Rewards accrue to the wrapped rebasing token wrapper contract as it holds the underlying funds. Thereis no implementation to call claimAllRewards or utilize allowClaimOnBehalf functions on the RewardsCon-

troller contract for aave and RewardsCoordinator for eigenlayer
Impact:

• Accrued rewards become effectively locked in the protocol.
• Loss of value for protocol participants who should benefit from these reward mechanisms.
• Reduced protocol efficiency as incentive mechanisms cannot be fully utilized.
• Potential compound effect as unclaimed rewards may also miss out on additional yield opportuni-ties.

Recommendation:

• Implement mechanism to claim rewards from specific integrations.
• Ensure rewards are re-invested, distributed to user or withdrawn.
• Write test cases to verify the same.

Level: Fixed in PR 25.
Cantina Managed: Fixed.
3.2 Medium Risk
3.2.1 No slippage protection in mintlvlUSD in case of matching decimals

Severity: Medium Risk
Context: LevelBaseReserveManager.sol#L203-L213
Description: In case collateralDecimals == lvlUsdDecimals in the mintlvlUSDmethod, the minimum
lvlUSDAmount (slippage protection) will remain 0 leading to potential losses for the receiver / collateralprovider.
The mintlvlUSD method of the LevelBaseReserveManager contract is responsible to create and submit a
MINT order to the LevelMinting contract to mint the appropriate amount of lvlUSD for the given amountof collateral.
This order includes a minimum lvlUSDAmount which serves as a slippage parameter ensuring that thereceiver / collateral provider is not at a loss due to an unexpectedly low amount of minted lvlUSD.
Assuming the collateral is also a USD stablecoin, the minimum lvlUSDAmount only needs to be scaledaccording to the collateral token's decimals:
uint256 lvlUSDAmount;

if (collateralDecimals < lvlUsdDecimals) {

lvlUSDAmount =

collateralAmount *

(10 ** (lvlUsdDecimals - collateralDecimals));

} else if (collateralDecimals > lvlUsdDecimals) {

lvlUSDAmount =

collateralAmount /

(10 ** (collateralDecimals - lvlUsdDecimals));

}

However, in case collateralDecimals == lvlUsdDecimals, the lvlUSDAmount remains 0.
Impact: Having a minimum lvlUSDAmount of 0 exposes the receiver / collateral provider to a maximumslippage risk in terms of minted lvlUSD vs. provided collateral, which can turn out to be a severe loss.
Likelihood: The lvlUSD token has 18 decimals which is most common for ERC20 tokens. Despite
USDC/USDT having only 6 decimals on Ethereum, it is not unlikely that another stablecoin with 18 decimalswill be used as collateral.
Recommendation: It is recommended to cover the case where collateralDecimals == lvlUsdDeci-

mals:

6

https://aave.com/docs/developers/smart-contracts/incentives#rewardscontroller
https://aave.com/docs/developers/smart-contracts/incentives#write-methods-claimallrewardsonbehalf
https://github.com/Level-Money/contracts/pull/25
https://cantina.xyz/code/decf630d-b084-4490-8f13-ee6af4dec2bc/src/reserve/LevelBaseReserveManager.sol#L203-L213

uint256 lvlUSDAmount;

if (collateralDecimals < lvlUsdDecimals) {

lvlUSDAmount =

collateralAmount *

(10 ** (lvlUsdDecimals - collateralDecimals));

} else if (collateralDecimals > lvlUsdDecimals) {

lvlUSDAmount =

collateralAmount /

(10 ** (collateralDecimals - lvlUsdDecimals));

- }

+ } else {

+ lvlUSDAmount = collateralAmount;

+ }

Level: Fixed in PR 25.
Cantina Managed: Fixed.
3.3 Low Risk
3.3.1 Conflicting method permissions

Severity: Low Risk
Context: LevelBaseReserveManager.sol#L102-L112, LevelKarakReserveManager.sol#L26-L33, LevelSymbioticReserveManager.sol#L29-L43, AaveV3YieldManager.sol#L45-L53,AaveV3YieldManager.sol#L64-L67, AaveV3YieldManager.sol#L87-L93
Description: Throughout the protocol there are multiple methods that involve a transfer of funds, i.e.pulling funds via ERC20.transferFrom. These methods have different pemission levels, e.g. permission-less, restricted to the MANAGER_AGENT_ROLE, etc...
However, thesemethods do not increase token allowances to actually facilitate the involved transfers. Perprotocol design this is manually handled by forceApprovemethods which are restricted to the DEFAULT_-

ADMIN_ROLE.
Consequently, this leads to conflicting method permissions since many lower-permissioned methods arestill dependent on the admin for token approvals.
Recommendation: We recommend to directly implement the necessary allowance handling whereverfunds are transferred.
Level: Fixed in PR 25.
Cantina Managed: Fixed.
3.3.2 Ineffective role seggregation in LevelBaseReserveManager

Severity: Low Risk
Context: LevelBaseReserveManager.sol#L88-L90
Description: In the LevelBaseReserveManager contract, the same _admin account is assigned to the DE-

FAULT_ADMIN_ROLE as well as the PAUSER_ROLE:
_grantRole(DEFAULT_ADMIN_ROLE, _admin);

_grantRole(ALLOWLIST_ROLE, _allowlister);

_grantRole(PAUSER_ROLE, _admin);

Recommendation: We recommend to assign the PAUSER_ROLE to a separate account (different from _-

admin) at contract construction.
Level: Acknowledged.
Cantina Managed: Acknowledged.

7

https://github.com/Level-Money/contracts/pull/25
https://cantina.xyz/code/decf630d-b084-4490-8f13-ee6af4dec2bc/src/reserve/LevelBaseReserveManager.sol#L102-L112
https://cantina.xyz/code/decf630d-b084-4490-8f13-ee6af4dec2bc/src/reserve/LevelKarakReserveManager.sol#L26-L33
https://cantina.xyz/code/decf630d-b084-4490-8f13-ee6af4dec2bc/src/reserve/LevelKarakReserveManager.sol#L26-L33
https://cantina.xyz/code/decf630d-b084-4490-8f13-ee6af4dec2bc/src/reserve/LevelSymbioticReserveManager.sol#L29-L43
https://cantina.xyz/code/decf630d-b084-4490-8f13-ee6af4dec2bc/src/yield/AaveV3YieldManager.sol#L45-L53
https://cantina.xyz/code/decf630d-b084-4490-8f13-ee6af4dec2bc/src/yield/AaveV3YieldManager.sol#L64-L67
https://cantina.xyz/code/decf630d-b084-4490-8f13-ee6af4dec2bc/src/yield/AaveV3YieldManager.sol#L87-L93
https://github.com/Level-Money/contracts/pull/25
https://cantina.xyz/code/decf630d-b084-4490-8f13-ee6af4dec2bc/src/reserve/LevelBaseReserveManager.sol#L88-L90

3.3.3 The maxSlippageThresholdBasisPoints could exceed 100%

Severity: Low Risk
Context: LevelBaseReserveManager.sol#L332-L336
Description: The setMaxSlippageThresholdBasisPoints method of the LevelBaseReserveManager con-tract does not prevent the maxSlippageThresholdBasisPoints parameter from being set to values greaterthan 100%, i.e. MAX_BASIS_POINTS:
function setMaxSlippageThresholdBasisPoints(

uint16 _maxSlippageThresholdBasisPoints

) external onlyRole(DEFAULT_ADMIN_ROLE) {

maxSlippageThresholdBasisPoints = _maxSlippageThresholdBasisPoints;

}

Recommendation: We recommend to enforce an upper limit of MAX_BASIS_POINTS:
function setMaxSlippageThresholdBasisPoints(

uint16 _maxSlippageThresholdBasisPoints

) external onlyRole(DEFAULT_ADMIN_ROLE) {

+ require(maxSlippageThresholdBasisPoints <= MAX_BASIS_POINTS);

maxSlippageThresholdBasisPoints = _maxSlippageThresholdBasisPoints;

}

Level: Fixed in PR 25.
Cantina Managed: Fixed.
3.3.4 Treasury rake might not be taken due to rounding direction

Severity: Low Risk
Context: LevelBaseReserveManager.sol#L167-L169
Description: In the LevelBaseReserveManager contract, the treasury rake will not be taken when mintingsmall amounts of lvlUSD, i.e. when amount * rakeBasisPoints < MAX_BASIS_POINTS.
uint256 rake = amount.mulDiv(rakeBasisPoints, MAX_BASIS_POINTS);

uint256 remainder = amount - rake;

IERC20(token).safeTransfer(treasury, rake);

Due to mulDiv rounding down, the treasury rake can be circumvented by splitting a mint operation intomultiple small ones which satisfy the above amount condition.
Recommendation: We recommend to implement a mulDivUp pattern which always rounds up and there-fore the treasury rake will be taken in any case.
Level: Fixed in PR 25.
Cantina Managed: Fixed.
3.3.5 Conflicting decimals handling

Severity: Low Risk
Context: WrappedRebasingERC20.sol#L46-L54, AaveV3YieldManager.sol#L115-L126
Description: The AaveV3YieldManager contract expects the wrapper's underlying token to have a decimalsmethod, while the WrappedRebasingERC20 contract also supports _underyling tokens without a decimalsmethod.

8

https://cantina.xyz/code/decf630d-b084-4490-8f13-ee6af4dec2bc/src/reserve/LevelBaseReserveManager.sol#L332-L336
https://github.com/Level-Money/contracts/pull/25
https://cantina.xyz/code/decf630d-b084-4490-8f13-ee6af4dec2bc/src/reserve/LevelBaseReserveManager.sol#L167-L169
https://github.com/Level-Money/contracts/pull/25
https://cantina.xyz/code/decf630d-b084-4490-8f13-ee6af4dec2bc/src/WrappedRebasingERC20.sol#L46-L54
https://cantina.xyz/code/decf630d-b084-4490-8f13-ee6af4dec2bc/src/yield/AaveV3YieldManager.sol#L115-L126

// AaveV3YieldManager

function setWrapperForToken(

address token,

address wrapper

) external onlyRole(DEFAULT_ADMIN_ROLE) {

if (address(WrappedRebasingERC20(wrapper).underlying()) != token) {

revert InvalidWrapper();

}

if (ERC20(token).decimals() != ERC20(wrapper).decimals()) { // decimals essential

revert TokenAndWrapperDecimalsMismatch();

}

tokenToWrapper[token] = wrapper;

}

// WrappedRebasingERC20

function decimals() public view virtual override returns (uint8) {

try IERC20Metadata(address(_underlying)).decimals() returns (// decimals optional

uint8 value

) {

return value;

} catch {

return super.decimals();

}

}

Note that having a decimalsmethod is optional according to the ERC-20 specification.
Recommendation: We recommend to resolve this conflict in favor of ERC-20 tokens that do not have a
decimalsmethod, i.e. potentially remove the decimals check from setWrapperForToken. Additionally, the(underlying) decimals in the constructor of WrappedRebasingERC20 could be specified.
Level: Acknowledged.
Cantina Managed: Acknowledged.
3.3.6 Excessive use of whenNotPausedmight block withdrawals

Severity: Low Risk
Context: LevelEigenlayerReserveManager.sol#L100, LevelKarakReserveManager.sol#L54, LevelSymbioti-cReserveManager.sol#L67
Description: whenNotPaused might prevent redeeming funds or completing withdrawal in case of emer-gency if pause and unpause are guarded by timelock in reserve managers.
Recommendation: Protocol should considering allowing withdrawals when paused if having pausing/ unpausing functionality behind timelock and instead pause redeeming of lvlUSD to prevent systemicissues.
Level: Acknowledged.
Cantina Managed: Acknowledged.

9

https://cantina.xyz/code/decf630d-b084-4490-8f13-ee6af4dec2bc/src/reserve/LevelEigenlayerReserveManager.sol#L100
https://cantina.xyz/code/decf630d-b084-4490-8f13-ee6af4dec2bc/src/reserve/LevelKarakReserveManager.sol#L54
https://cantina.xyz/code/decf630d-b084-4490-8f13-ee6af4dec2bc/src/reserve/LevelSymbioticReserveManager.sol#L67
https://cantina.xyz/code/decf630d-b084-4490-8f13-ee6af4dec2bc/src/reserve/LevelSymbioticReserveManager.sol#L67

3.4 Informational
3.4.1 Superfluous granting of DEFAULT_ADMIN_ROLE in AaveV3YieldManager

Severity: Informational
Context: AaveV3YieldManager.sol#L40
Description: In the constructor of AaveV3YieldManager, the DEFAULT_ADMIN_ROLE is assigned to the _adminaccount. However, this is already handled in the constructor of the base contract BaseYieldManager.
// AaveV3YieldManager

constructor(IPool _aavePoolProxy, address _admin) BaseYieldManager(_admin) {

aavePoolProxy = _aavePoolProxy;

_grantRole(DEFAULT_ADMIN_ROLE, _admin);

}

// BaseYieldManager

constructor(address _admin) {

_grantRole(DEFAULT_ADMIN_ROLE, _admin);

}

Recommendation: We recommend to remove the _grantRole(DEFAULT_ADMIN_ROLE, _admin) call fromthe constructor of AaveV3YieldManager.
Level: Fixed in PR 25.
Cantina Managed: Fixed.
3.4.2 Insufficient wrapper type checking

Severity: Informational
Context: AaveV3YieldManager.sol#L115-L126
Description: When adding a rebasing token wrapper to the AaveV3YieldManager contract, the setWrap-

perForTokenmethod performs an underlying token and a decimals check.
function setWrapperForToken(

address token,

address wrapper

) external onlyRole(DEFAULT_ADMIN_ROLE) {

if (address(WrappedRebasingERC20(wrapper).underlying()) != token) {

revert InvalidWrapper();

}

if (ERC20(token).decimals() != ERC20(wrapper).decimals()) {

revert TokenAndWrapperDecimalsMismatch();

}

tokenToWrapper[token] = wrapper;

}

However, it is still not assured that the wrapper is using the protocol's WrappedRebasingERC20 contract.Any other contract having an underlyingmethod and a decimalsmethod could pass these checks too.
Recommendation: One way to ensure that a contract is actually a WrappedRebasingERC20 contract isto deploy it. Therefore, we recommend to implement a factory contract that maintains a mapping ofvalid/deployed WrappedRebasingERC20 contracts.
Level: Acknowledged.
Cantina Managed: Acknowledged.

10

https://cantina.xyz/code/decf630d-b084-4490-8f13-ee6af4dec2bc/src/yield/AaveV3YieldManager.sol#L40
https://github.com/Level-Money/contracts/pull/25
https://cantina.xyz/code/decf630d-b084-4490-8f13-ee6af4dec2bc/src/yield/AaveV3YieldManager.sol#L115-L126

3.4.3 Unused storage variable in LevelEigenlayerReserveManager.sol

Severity: Informational
Context: LevelEigenlayerReserveManager.sol#L17
string public operatorName;

is defined and set but not used for anything
Level: Acknowledged. This is more an internal tool for us to keep track of which operator we've delegatedthe reserve manager to.
Cantina Managed: Acknowledged.
3.4.4 Outdated version of openzeppelin is used with potential security advisories

Severity: Informational
Context: StakedlvlUSD.sol#L6-L8
Description: There are various security advisories affecting 4.9.0 version of the OpenZeppelin Contracts.
Recommendation:

• Consider upgrading to latest stable release of openzeppelin.
• Change imports in StakedlvlUSD.sol and other contracts importing from 4.9.0 to latest stable re-lease.

Level: Acknowledged.
Cantina Managed: Acknowledged.

11

https://cantina.xyz/code/decf630d-b084-4490-8f13-ee6af4dec2bc/src/reserve/LevelEigenlayerReserveManager.sol#L17
https://cantina.xyz/code/decf630d-b084-4490-8f13-ee6af4dec2bc/src/StakedlvlUSD.sol#L6-L8
https://github.com/OpenZeppelin/openzeppelin-contracts/security

	Introduction
	About Cantina
	Disclaimer
	Risk assessment
	Severity Classification

	Security Review Summary
	Findings
	High Risk
	Insufficient slippage protection in mintlvlUSD
	USDT cannot be withdrawn from AaveV3YieldManager
	DoS due to not accepting native ETH transfer
	Inability to claim various protocol rewards due to missing implementation

	Medium Risk
	No slippage protection in mintlvlUSD in case of matching decimals

	Low Risk
	Conflicting method permissions
	Ineffective role seggregation in LevelBaseReserveManager
	The maxSlippageThresholdBasisPoints could exceed 100%
	Treasury rake might not be taken due to rounding direction
	Conflicting decimals handling
	Excessive use of whenNotPaused might block withdrawals

	Informational
	Superfluous granting of DEFAULT_ADMIN_ROLE in AaveV3YieldManager
	Insufficient wrapper type checking
	Unused storage variable in LevelEigenlayerReserveManager.sol
	Outdated version of openzeppelin is used with potential security advisories

