
Mellow FinanceSecurity Review

Cantina Managed review by:
Saw-Mon and Natalie, Lead Security Researcher
Deadrosesxyz, Security Researcher
Kaden, Security Researcher
Akshay Srivastav, Associate Security Researcher
May 20, 2024

Contents
1 Introduction 31.1 About Cantina . 31.2 Disclaimer . 31.3 Risk assessment . 31.3.1 Severity Classification . 3
2 Security Review Summary 4
3 Findings 53.1 Critical Risk . 53.1.1 Lack of input validation on callbackParams.gauge allows for theft of positions 53.1.2 If operatorFlag == false, attacker can steal all NFTs within the contract. 53.2 High Risk . 63.2.1 getOraclePrice is prone to manipulation . 63.3 Medium Risk . 63.3.1 RebalanceParams.callback can steal accrued fees of liquidity NFTs during rebalance 63.3.2 LpWrapper deposits and withdraws will be bricked if Velodrome gauge is killed. 73.3.3 Usage of a TWAP price instead of the exact current sqrtPriceX96 will lead to wrongcalculation of token amounts within the position . 73.3.4 When depositing a position into a gauge, accrued fees are sent to Core.sol 73.3.5 Denial of service attack on LpWrapper's deposit and withdraw functions 83.3.6 Unsafe max deadline provided . 83.3.7 Lack of consideration of time in ensureNoMEV leads to unexpected reverts 93.3.8 Unexpected ETH transfer DoS . 93.4 Low Risk . 103.4.1 Multi-block MEV may still be possible with ensureNoMEV 103.4.2 The params provided to VeloDeployFactory.updateStrategyParams is not validated . 113.4.3 LpWrapper's initialize can be called by anyone to set and fix most of the relevantparameters . 113.4.4 Checks missing for the derived contracts addresses in LpWrapper.constructor 123.4.5 Unusability of LpWrapper's deposit and withdraw functions in case the contract isinitialized with zero initialTotalSupply . 123.4.6 Unusability of LpWrapper's deposit and withdraw functions in case a position's liquid-ity becomes 0 . 133.4.7 LpWrapper deposits and withdraws may be temporarily bricked in a certain edge case. 133.4.8 Always centering the position if width is changed may lead to unexpected behaviour. 133.4.9 rebalancemight unnecessarily revert when rebalancing multiple positions 143.4.10 LpWrapper contracts can be deployed without oracle security parameters 143.4.11 Unoptimal use of predetermined initialLiquidity for LpWrapper creation 143.4.12 During strategy creation the rewardToken should be fetched dynamically 153.4.13 The LpWrapper::OPERATOR role is not revoked in VeloDeployFactory-

Helper.createLpWrapper function . 153.4.14 Withdrawal flow of users will get broken if their position's CallbackParams are set asnull . 163.4.15 Invalid ManagedPositionInfos can be created in Core . 163.4.16 Lack of authorization for functions intended to be delegatecalled 163.4.17 rewardsTokenmay cause rounding issues if not 18 decimals 173.4.18 rebalancemay revert for positions with multiple ammPositionIds 183.4.19 Anyone can skim ERC20 tokens from the Core contract 193.5 Gas Optimization . 203.5.1 0 can be passed as lower and upper ticks when strategyModule.calculateTarget in
VeloDeployFactory._mint . 203.5.2 Redundant allowance and balance check before transfer 213.5.3 Redundant zero value state var initialization . 223.5.4 Off-chain counter mechanism . 223.6 Informational . 223.6.1 Lack of testing . 223.6.2 Some of the _tickSpacingToDepositParams fields are unused 233.6.3 Unreachable revert statement . 23

1

3.6.4 Some LpWrapper invariants . 243.6.5 Centralization risk of LpWrapper contract . 243.6.6 Inconsistent handling of ammPositionIds in VeloDeployFactory.createStrategy . . . 253.6.7 Invalid validation applied in VeloOracle.getOraclePrice 253.6.8 Shadowed function names . 253.6.9 Lack of input validation . 263.6.10 VeloDeployFactory tickSpacing collision possible in mappings 27

2

1 Introduction
1.1 About Cantina
Cantina is a security servicesmarketplace that connects top security researchers and solutionswith clients.Learn more at cantina.xyz
1.2 Disclaimer
CantinaManagedprovides a detailed evaluation of the security posture of the code at a particularmomentbased on the information available at the time of the review. While CantinaManaged endeavors to identifyand disclose all potential security issues, it cannot guarantee that every vulnerability will be detected orthat the code will be entirely secure against all possible attacks. The assessment is conducted based onthe specific commit and version of the code provided. Any subsequent modifications to the code mayintroduce new vulnerabilities that were absent during the initial review. Therefore, any changes madeto the code require a new security review to ensure that the code remains secure. Please be advisedthat the Cantina Managed security review is not a replacement for continuous security measures such aspenetration testing, vulnerability scanning, and regular code reviews.
1.3 Risk assessment
Severity Description
Critical Must fix as soon as possible (if already deployed).

High Leads to a loss of a significant portion (>10%) of assets in the protocol, or sig-nificant harm to a majority of users.

Medium Global losses <10% or losses to only a subset of users, but still unacceptable.

Low Losses will be annoying but bearable. Applies to things like griefing attacks thatcan be easily repaired or even gas inefficiencies.

Gas Optimization Suggestions around gas saving practices.

Informational Suggestions around best practices or readability.
1.3.1 Severity Classification
The severity of security issues found during the security review is categorized based on the above table.Critical findings have a high likelihood of being exploited and must be addressed immediately. High find-ings are almost certain to occur, easy to perform, or not easy but highly incentivized thus must be fixedas soon as possible.
Medium findings are conditionally possible or incentivized but are still relatively likely to occur and shouldbe addressed. Low findings a rare combination of circumstances to exploit, or offer little to no incentiveto exploit but are recommended to be addressed.
Lastly, some findings might represent objective improvements that should be addressed but do not im-pact the project’s overall security (Gas and Informational findings).

3

https://cantina.xyz

2 Security Review Summary
Mellow Protocol is a permissionless vaults ecosystem for capital efficiency, creating the future of optimalcross-protocol multi-token liquidity allocation.
From Apr 8th to Apr 19th the Cantina team conducted a review of mellow-alm-toolkit on commit hash8413fc09. The team identified a total of 44 issues in the following risk categories:

• Critical Risk: 2
• High Risk: 1
• Medium Risk: 8
• Low Risk: 19
• Gas Optimizations: 4
• Informational: 10

4

https://github.com/mellow-finance/mellow-alm-toolkit
https://github.com/mellow-finance/mellow-alm-toolkit/tree/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3

3 Findings
3.1 Critical Risk
3.1.1 Lack of input validation on callbackParams.gauge allows for theft of positions
Severity: Critical Risk
Context: VeloAmmModule.sol#L39
Description: The gauge parameter is nowhere verified to be an actual Velodrome gauge. This would allowfor an attacker to steal all positions which are up for rebalancing.
1. Attacker deposits position in Core.sol and sets callbackParams.gauge to his own 'fake' gauge.
2. Since the gauge is owned by the attacker, the attacker can immediately get back the NFT.
3. Attacker calls rebalance on a victim's position. The position with which it will be rebalanced is theattacker's position from above.
4. The attacker then calls setPositionParams and sets callbackParams.gauge to the victim's gauge.
5. The attacker can then call withdraw and get the position from the gauge.

Recommendation: Verify that callbackParams.gauge is a Velodrome gauge.
Mellow: Fixed in commit 736eef90.
Cantina: Fixed in commit 736eef90. VeloAmmModule now verifies that callbackParams.gauge is a validVelodrome gauge.
Note: it does not however verify that it is the position's corresponding gauge. Could be used by users to not allowfor their position to be rebalanced (by calling setPositionParams on their position and changing the gauge).Could be used by LpWrapper admins to disable deposits/withdrawals indefinitely.
3.1.2 If operatorFlag == false, attacker can steal all NFTs within the contract.
Severity: Critical Risk
Context: Core.sol#L169
Description: For the attack, the attacker will need to first deploy a ERC777-like custom token and then aVelodrome pool with it. Let's say victim's position is in WETH/USDC. Victim's position id = 1.
1. Attacker creates a NFT for his own ERC777/WETH token pool (id 2) and also a dust position in the

USDC/WETH pool (id 3).
2. Attacker deposits both NFTs in Core.sol.
3. Attacker rebalances the 3 positions, inputs them in the following order: Victim's USDC/WETH,

ERC777/WETH, Attacker's USDC/WETH (id 1, id 2, id 3).
4. When callback is done, within the callback the usermakes a swap, within their own ERC777/WETH pool,so some fees are accrued.
5. The user increases the liquidity of id 3 enough, so there's enough liquidity to bypass the minLiq-

uidity check of id 1.
6. Remember that the first position is the victim's. The returned id to be rebalanced with will be id 3(the attacker's USDC/WETH position).
7. Then the position in the ERC777/WETH pool will be rebalanced. Upon transferring it, any fees thathave been accrued will be sent to the callback. Remember that we have purposefully made somefees accrue, allowing us to 'steal' the transaction here in our ERC777-hook.
8. Now that we've stolen the transaction, we call withdraw on the attacker's position (id 3). (the rebal-ancing has not yet finished and it believes id 3 still belongs to the attacker).
9. Rebalancing continues.
10. We now deposit a dust position to rebalance attacker's USDC/WETH position.

5

https://github.com/mellow-finance/mellow-alm-toolkit/blob/fb5cfc1fe3b92135240e9fdb5f6271b4648c4d9f/src/modules/velo/VeloAmmModule.sol#L39
https://github.com/mellow-finance/mellow-alm-toolkit/tree/736eef90ecfa896b12b5f193e68bf95030eb475e
https://github.com/mellow-finance/mellow-alm-toolkit/tree/736eef90ecfa896b12b5f193e68bf95030eb475e
https://github.com/mellow-finance/mellow-alm-toolkit/blob/fb5cfc1fe3b92135240e9fdb5f6271b4648c4d9f/src/Core.sol#L169

In the end, we've stolen the victim's position and their position is tied to an NFT which is not within thecontract, nor within the Gauge.
Recommendation: Keep the operator flag up, add nonReentrantmodifier to withdraw and do not allowfor empty callbackParams.
Mellow: Fixed in commit 736eef90.
Cantina: Fixed in commit 736eef90. Contract now has nonReentrant modifiers and does not allow forempty callback params.
3.2 High Risk
3.2.1 getOraclePrice is prone to manipulation
Severity: High Risk
Context: VeloOracle.sol#L70
Description: getOraclePrice is used to retrieve the latest price from a Velodrome pool. There's a faultyassumption, that if the latest observation's timestamp is in the past, the slot0 price can't have been ma-nipulated, thus it is returned with no extra checks made. The problem is that Velodrome pools writeobservations once every 15 seconds, therefore allowing for a manipulated price with an outdated obser-vation.
if (block.timestamp != blockTimestamp)

return (spotSqrtPriceX96, spotTick);

Recommendation: Use the latest observation price only if more than 15 seconds have passed since.
Mellow: Fixed in commit 736eef90.
Cantina Managed: Fixed in commit 736eef90. Oracle now always returns spot price. It's important forexternal protocols to not simply rely on the price returned here, but rather alsomake a call to ensureNoMEV.
3.3 Medium Risk
3.3.1 RebalanceParams.callback can steal accrued fees of liquidity NFTs during rebalance
Severity: Medium Risk
Context: Core.sol#L221-L223
Description: During the rebalancing process the liquidity NFTs are transferred to the
RebalanceParams.callback address.
In case the CallbackParams of a user's managed position are empty (a scenario when the user just wantrebalancing without gauge deposits) then it would be possible for RebalanceParams.callback address toclaim the accrued fees of that NFT at the moment when it receives the NFT for rebalancing. Essentiallystealing the accrued fees of the user.
Recommendation: Similar to these liquidity checks (Core.sol#L236), also consider validating the accruedfees to the NFT.
Mellow: Fixed in commit 736eef90.
Cantina Managed: Issue has been fixed by not supporting empty CallbackParams.

6

https://github.com/mellow-finance/mellow-alm-toolkit/tree/736eef90ecfa896b12b5f193e68bf95030eb475e
https://github.com/mellow-finance/mellow-alm-toolkit/tree/736eef90ecfa896b12b5f193e68bf95030eb475e
https://github.com/mellow-finance/mellow-alm-toolkit/blob/fb5cfc1fe3b92135240e9fdb5f6271b4648c4d9f/src/oracles/VeloOracle.sol#L70
https://github.com/mellow-finance/mellow-alm-toolkit/tree/736eef90ecfa896b12b5f193e68bf95030eb475e
https://github.com/mellow-finance/mellow-alm-toolkit/tree/736eef90ecfa896b12b5f193e68bf95030eb475e
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/Core.sol#L221-L223
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/Core.sol#L236
https://github.com/mellow-finance/mellow-alm-toolkit/tree/736eef90ecfa896b12b5f193e68bf95030eb475e

3.3.2 LpWrapper deposits and withdraws will be bricked if Velodrome gauge is killed.
Severity: Medium Risk
Context: LpWrapper.sol#L255
Description:Within the LpWrapper contract, all withdrawsmake a withdraw and deposit back in Core.sol.The problem is that in case the corresponding Velodrome gauge is killed, it will not allow for any newdeposits to happen. This would lead to all funds within the LpWrapper forever stuck.
Recommendation: Consider adding an emergency withdraw function.
Mellow: Fixed in commit 736eef90.
Cantina Managed: The attempt to withdraw from the gauge is skipped at VeloAmmModule.sol#L146.
3.3.3 Usage of a TWAP price instead of the exact current sqrtPriceX96 will lead to wrong calcula-tion of token amounts within the position
Severity: Medium Risk
Context: LpWrapper.sol#L97
Description: When depositing in the LpWrapper getAmountsForLiquidity is called in order to calculatethe the exact token0 and token1 amounts within the position. The problem is that the sqrtPriceX96 usedis not the current one, but rather the TWAP value returned from the oracle. This would lead to inaccuratetoken amounts calculated and users depositing less than expected and at a different ratio than expected.
Recommendation: Use the slot0's sqrtPriceX96.
Mellow: Fixed in commit 52c0aaf0.
Cantina Managed: Fixed.
3.3.4 When depositing a position into a gauge, accrued fees are sent to Core.sol

Severity: Medium Risk
Context: VeloAmmModule.sol#L185
Description: When depositing a position into a gauge, collect is invoked and it transfers the accruedfees to the msg.sender. The problem is that in this case, the msg.sender is Core.sol. If the user's positionhad accrued any fees prior to the deposit, they'll be left within the contract, up until another user skimsthem:
function deposit(uint256 tokenId) external override nonReentrant {

require(nft.ownerOf(tokenId) == msg.sender, "NA");

require(voter.isAlive(address(this)), "GK");

(,, address _token0, address _token1, int24 _tickSpacing, int24 tickLower, int24 tickUpper,,,,,) =

nft.positions(tokenId);

require(token0 == _token0 && token1 == _token1 && tickSpacing == _tickSpacing, "PM");

// trigger update on staked position so NFT will be in sync with the pool

nft.collect(

INonfungiblePositionManager.CollectParams({

tokenId: tokenId,

recipient: msg.sender,

amount0Max: type(uint128).max,

amount1Max: type(uint128).max

})

);

Recommendation: If during the deposit any fees are collected, send them to the owner of the position.
Mellow: Fixed in commit 52c0aaf0.
Cantina Managed: Fixed. Upon deposit, fees are now sent to the position owner.

7

https://github.com/mellow-finance/mellow-alm-toolkit/blob/fb5cfc1fe3b92135240e9fdb5f6271b4648c4d9f/src/utils/LpWrapper.sol#L255
https://github.com/mellow-finance/mellow-alm-toolkit/tree/736eef90ecfa896b12b5f193e68bf95030eb475e
https://github.com/mellow-finance/mellow-alm-toolkit/blob/736eef90ecfa896b12b5f193e68bf95030eb475e/src/modules/velo/VeloAmmModule.sol#L146
https://github.com/mellow-finance/mellow-alm-toolkit/blob/fb5cfc1fe3b92135240e9fdb5f6271b4648c4d9f/src/utils/LpWrapper.sol#L97
https://github.com/mellow-finance/mellow-alm-toolkit/commit/52c0aaf010781d627d5d12abece0ce00cceec947
https://github.com/mellow-finance/mellow-alm-toolkit/blob/fb5cfc1fe3b92135240e9fdb5f6271b4648c4d9f/src/modules/velo/VeloAmmModule.sol#L185
https://github.com/mellow-finance/mellow-alm-toolkit/commit/52c0aaf010781d627d5d12abece0ce00cceec947

3.3.5 Denial of service attack on LpWrapper's deposit and withdraw functions
Severity: Medium Risk
Context: Counter.sol#L26-L29 Core.sol#L98
Description: The Core contract allows any address to be set as the CallbackParams.counter address of amanaged position. The LpWrapper also has its own CallbackParams.counter set in its managed position.
Combination of the above stated mechanisms can be used to DoS the deposit and withdraw functions of
LpWrapper.
Scenario:

• An attacker brings an NFT with insignificant (but >0) liquidity and deposits it in Core.
• Attacker updates the gauge and counter addresses of his position such that:

– gauge returns a malicious rewardToken which returns a huge uint256 value as Core contractbalance.
– counter is set to the Counter contract which is used by an LpWrapper instance.

• Attacker performs an emptyRebalance of his position. Here the value state of LpWrapper's Counterbecomes uint256.max.
• Now no more rewards can be counted in LpWrapper's Counter as the Counter.add call will alwaysreverts due to overflow.
• As on every LpWrapper's deposit and withdraw call the flow goes like this LpWrapper.deposit() →
Core.withdraw() → VeloAmmModule.beforeRebalance() → Counter.add().

• All deposit and withdraw transactions will revert. Resulting in DoS of LpWrapper.
Recommendation: Consider dropping the use of Counter contract as there is no on-chain use of thiscontract, rewards sent from Core to Farm can be tracked off-chain. Or consider removing the ability tochoose or change the Counter address of a managed position.
Mellow: Fixed 736eef90.
Cantina Managed: The Counter.add function now validates the token and farm addresses. These valida-tions prevent the above mentioned attack.
3.3.6 Unsafe max deadline provided
Severity: Medium Risk
Context: VeloDepositWithdrawModule.sol#L36, VeloDepositWithdrawModule.sol#L59, VeloDeployFac-tory.sol#L155
Description: A maximum deadline is provided for execution of multiple NonfungiblePositionManagerfunctions: increaseLiquidity, decreaseLiquidity and mint:
deadline: type(uint256).max,

Note also that the following format provided in VeloDeployFactory._mint is also effectively a max dead-line because it marks the deadline as the current timestamp at the time of execution, which effectivelycauses the deadline check to validate that block.timestamp <= block.timestamp, which is always true:
deadline: block.timestamp,

Use of a maximum deadline is unsafe as it may result in the transaction to sit in the mempool for a verylong time, until the conditions in which we're modifying our liquidity position have become undesirable,potentially even as a result of an MEV builder processing the transactions alongside some other actionsto intentionally cause a loss of funds.
Recommendation: Rather than using a maximum deadline, consider allowing the caller to provide the
deadline as a parameter.
Mellow: Fixed in 09171ab5.

8

https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/utils/Counter.sol#L26-L29
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/Core.sol#L98
https://github.com/mellow-finance/mellow-alm-toolkit/tree/736eef90ecfa896b12b5f193e68bf95030eb475e
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/modules/velo/VeloDepositWithdrawModule.sol#L36
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/modules/velo/VeloDepositWithdrawModule.sol#L59
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/utils/VeloDeployFactory.sol#L155
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/utils/VeloDeployFactory.sol#L155
https://github.com/mellow-finance/mellow-alm-toolkit/commit/09171ab5a5a5bb48604a9f00cbfc22d048ae3015

Cantina Managed: Issue has been fixed by allowing user to provide deadline parameter which is vali-dated in the outer call context.
3.3.7 Lack of consideration of time in ensureNoMEV leads to unexpected reverts
Severity: Medium Risk
Context: VeloOracle.sol#L11-L53
Description: VeloOracle.ensureNoMEV works by looking back at a given amount of observations andreverting if the tick delta between observations exceeds a maxAllowedDelta. The observations are re-trieved from the given CLPool where they are written any time an in-range liquidity position is modified,or a swap occurs, updating the most recent observation if it was within 15 seconds. This logic is used toensure that the price of the pool has not recently changed beyond a certain amount.
The problem with ensureNoMEV's logic here is that it implicitly assumes that the observations that arebeing considered are recent, however if there have not been any swaps or in-range liquidity modificationsrecently, then there will not be recent observations. Instead, wemay be looking further back in time thanintended.
Consider for example a circumstance where there's a large swap that exceeds the maxAllowedDelta, thenthere is no activity for a while. Even though the price has not recently changed, the function will revertsince it's looking at the most recent observations, regardless of when they actually occurred.
The result of this is that rebalances can be DoS'd until sufficient observations are written such that en-
sureNoMEV no longer reverts. This can lead to extended periods of time in which the position is out ofrange and thus not earning liquidity fees.
Recommendation: Consider modifying the ensureNoMEV logic to consider time between observationsinstead of just a lookback amount of observations, e.g. if there are no observations exceeding the max-

AllowedDelta in x seconds, return.
Mellow: Fixed in commit f839c6c8.
Cantina Managed: Issue has been fixed by incorporating a maxAge to determine whether observationsshould be evaluated. Fix also persist and is present in 736eef90ecfa896b12b5f193e68bf95030eb475e.
3.3.8 Unexpected ETH transfer DoS
Severity: Medium Risk
Context: VeloDepositWithdrawModule.sol#L29-L38, VeloDeployFactory.sol#L143-L158
Description: The NonfungiblePositionManager has a few functions which include execution of the
refundETH function. In VeloDepositWithdrawModule.deposit and VeloDeployFactory.createStrategy,we call NonfungiblePositionManager.increaseLiquidity and NonfungiblePositionManager.mint,respectively. Both of these functions execute refundETH.
refundETH works by simply transferring any remaining ETH balance in the contract to the msg.sender:
function refundETH() public payable override nonReentrant {

if (address(this).balance > 0) TransferHelper.safeTransferETH(msg.sender, address(this).balance);

}

The problem with this is that neither VeloDepositWithdrawModule nor VeloDeployFactory are capable ofreceiving ETH since they don't have a receive or fallback payable functions. See the Solidity documen-tation:
"When Ether is sent directly to a contract (without a function call, i.e. sender uses send or trans-fer) but the receiving contract does not define a receive Ether function or a payable fallbackfunction, an exception will be thrown, sending back the Ether".

As a result, any time the NonfungiblePositionManager contract has a non-zero ETH balance, VeloDe-
positWithdrawModule.deposit and VeloDeployFactory.createStrategy will unexpectedly revert. Thiscan happen by chance or it can be intentionally exploited by an attacker by frontrunning deposit and
createStrategy to transfer ETH to the NonfungiblePositionManager using SELFDESTRUCT/SENDALL, or evenby using one of the payable functions which don't refund ETH.

9

https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/oracles/VeloOracle.sol#L11-L53
https://github.com/mellow-finance/mellow-alm-toolkit/commit/f839c6c86b9bfd831ccdb1ef4f32479134512f72
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/modules/velo/VeloDepositWithdrawModule.sol#L29-L38
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/utils/VeloDeployFactory.sol#L143-L158
https://docs.soliditylang.org/en/latest/contracts.html#receive-ether-function
https://docs.soliditylang.org/en/latest/contracts.html#receive-ether-function

Recommendation: To resolve this issue, it's necessary to add a receive or fallback payable functionto both the LpWrapper and VeloDeployFactory contracts. Additionally, it's important to consider a mech-anism for handling received ETH afterwards, perhaps by transferring the ETH directly to a pre-definedaddress capable of receiving ETH.
Mellow: Fixed in PR 50.
Cantina: Fixed by including a receive function that wraps the ETH and transfers to the tx.origin.
3.4 Low Risk
3.4.1 Multi-block MEV may still be possible with ensureNoMEV

Severity: Low Risk
Context: VeloOracle.sol#L43-L50
Description: The VeloOracle.ensureNoMEV function takes a lookback amount of observations to look atand reverts if the tick change between individual observations exceeds the maxAllowedDelta.
for (uint16 i = 1; i <= lookback; i++) {

uint256 index = (observationCardinality + observationIndex - i) %

observationCardinality;

(uint32 timestamp, int56 tickCumulative, ,) = ICLPool(poolAddress)

.observations(index);

if (timestamp == 0) revert NotEnoughObservations();

int24 tick = int24(

(nextCumulativeTick - tickCumulative) /

int56(uint56(nextTimestamp - timestamp))

);

(nextTimestamp, nextCumulativeTick) = (timestamp, tickCumulative);

int24 delta = nextTick - tick;

if (delta > maxAllowedDelta || delta < -maxAllowedDelta)

revert PriceManipulationDetected();

nextTick = tick;

}

The concern with this logic is that the price change over a lookback amount of observations may besignificant while still being valid between individual observations according to the maxAllowedDelta. Thiscan be manipulated by an attacker watching the mempool if they can predict a minimum amount ofblocks that it would take for the rebalancing transaction to be accepted. In this time, the attacker couldstrategically frontrun the transaction over multiple observation periods such that we go up to but notexceed the maxAllowedDelta for any given observation period.
An attacker could predict theminimum amount of blocks a transaction would take to be processed simplyby considering the gas price of each transaction in the mempool, taking the sum of the gas limits of alltransactions with a higher gas price and dividing that sum by the block gas limit.
Marking this as low severity since it has been acknowledged as being within the intended design of theprotocol, though this particular attack vector may not be considered.
Recommendation: Consider validating against a total max delta of the sum of all observation deltas.Alternatively, consider adding documentation to indicate that this kind of attack may be possible.
Mellow: Acknowledged.
Cantina Managed: Acknowledged.

10

https://github.com/mellow-finance/mellow-alm-toolkit/pull/50
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/oracles/VeloOracle.sol#L43-L50

3.4.2 The params provided to VeloDeployFactory.updateStrategyParams is not validated
Severity: Low Risk
Context: VeloDeployFactory.sol#L46-L52
Description: Checks similar to validateStrategyParams are missing.
Recommendation: Make sure to add the same type of validation checks for this endpoint.
Mellow: The following changes have been introduced:
1. VeloDeployFactory.updateStrategyParams has been removed.
2. The created strategyParams:

IPulseStrategyModule.StrategyParams memory strategyParams = IPulseStrategyModule.StrategyParams({

tickNeighborhood: params.tickNeighborhood,

tickSpacing: int24(position.property),

strategyType: params.strategyType,

width: position.tickUpper - position.tickLower

});

is later validated when core.deposit(depositParams) is called
lpWrapper.initialize(core.deposit(depositParams), position.liquidity);

Sidenote, params.securityParams is used first:
core.oracle().ensureNoMEV(address(pool), params.securityParams);

Then later validated in core.deposit(depositParams):
lpWrapper.initialize(core.deposit(depositParams), position.liquidity);

Fixed in commit 736eef90.
Cantina: Verified.
3.4.3 LpWrapper's initialize can be called by anyone to set and fix most of the relevant parame-ters
Severity: Low Risk
Context: LpWrapper.sol#L51-L61
Description: Anyone can donate/deposit their position in Core to LpWrapper and then call initializewith that position and their desired initialTotalSupply. Thus fix the pool (T0,T1,∆i) associated to thiscontract. As after initialisation this pool cannot be changed by the other endpoints.
Moreover they can choose the number of concentrated liquidity ranges and the initial tick indices and theirassociated liquidity. They can also set the callback, strategy and security parameters until an LpWrapperadmin calls the setPositionParams.

In VeloDeployFactoryHelper the createLpWrapper does not call the constructor and initial-

ize atomically.
But in VeloDeployFactory.createStrategy the calls to constructor and initialize happen inthe same frame.

Recommendation: Either a comment should be added for thosewhowant to deploy this contractwithoutusing VeloDeployFactory.createStrategy as awarning. Or restrict initialize to be only callable by somespecific addresses/entities.
Mellow: Acknowledged.
Cantina Managed: Acknowledged.

11

https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/utils/VeloDeployFactory.sol#L46-L52
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/modules/strategies/PulseStrategyModule.sol#L13
https://github.com/mellow-finance/mellow-alm-toolkit/blob/736eef90ecfa896b12b5f193e68bf95030eb475e/src/utils/VeloDeployFactory.sol#L197
https://github.com/mellow-finance/mellow-alm-toolkit/tree/736eef90ecfa896b12b5f193e68bf95030eb475e
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/utils/LpWrapper.sol#L51-L61
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/utils/VeloDeployFactoryHelper.sol#L12
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/utils/VeloDeployFactory.sol#L168

3.4.4 Checks missing for the derived contracts addresses in LpWrapper.constructor

Severity: Low Risk
Context: LpWrapper.sol#L46-L48
Description: In the LpWrapper.constructor one derives and stores the following addresses:
positionManager = ammModule.positionManager();

ammDepositWithdrawModule = ammDepositWithdrawModule_;

ammDepositWithdrawModule also has its own immutable positionManager address.
We need to make sure that the derived positionManagermatches with the one stored in ammDepositWith-

drawModule.
Recommendation: Add a check in the constructor to make sure these 2 addresses match:
ammDepositWithdrawModule_.positionManager() == ammModule.positionManager()

Mellow: Acknowledged.
Cantina Managed: Acknowledged.
3.4.5 Unusability of LpWrapper's deposit and withdraw functions in case the contract is initializedwith zero initialTotalSupply

Severity: Low Risk
Context: LpWrapper.sol#L60 Core.sol#L123
Description: The LpWrapper is assumed to be a modular contract. The LpWrapper is initialized with an
initialTotalSupply value. This is the amount of LpWrapper ERC20 tokens which gets locked in the con-tract forever. This prevents users from withdrawing all deposited tokens from the LpWrapper and emptythe contract.
However in case the LpWrapper gets initialized with an initialTotalSupply of 0 then all users will beable to withdraw all funds and empty the pool. But the withdrawal for the last withdrawer will alwaysfail because his withdrawal will make the position.liquidity of ammPositionIds to be 0 and such NFTcannot be deposited into Core (due to Core.sol#L123).
Hence the LpWrapper.withdraw transaction of last withdrawer will always fail. Moreover, due to thesestatements the last withdrawer cannot withdraw partial amounts. Mitigation would be to deposit somedust amount into LpWrapper and keep it locked forever.
Under current protocol setup, it is assumed that LpWrapper will be deployed via VeloDeployFactory. The
0 initialTotalSupply situation is not possible in that way of deployment.
Recommendation: In the LpWrapper.initialize function make sure that initialTotalSupply is not 0,preferably it should be above a certain threshold.
Mellow: Fixed in commit 736eef90.
Cantina Managed: Issue has been fixed by adding a check in LpWrapper.initialize which ensures that
initialTotalSupply is not zero.

12

https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/utils/LpWrapper.sol#L46-L48
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/modules/velo/VeloDepositWithdrawModule.sol#L10
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/utils/LpWrapper.sol#L60
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/Core.sol#L123
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/Core.sol#L123
https://github.com/cantinasec/review-mellow/pull/2/files#diff-43440d9d87e9d31222c93502f56fbd4487f84d34a4d95873e79550e1846d4e6aR208-R214
https://github.com/mellow-finance/mellow-alm-toolkit/tree/736eef90ecfa896b12b5f193e68bf95030eb475e

3.4.6 Unusability of LpWrapper's deposit and withdraw functions in case a position's liquidity be-comes 0
Severity: Low Risk
Context: LpWrapper.sol#L95 Core.sol#L123
Description: The LpWrapper is assumed to be a modular contract and should be able to handle multiple
ammPositionIds. During deposits, it proportionately allocates the input token amounts to existing liquidi-ties of ammPositionIds NFTs. However it doesn't add any amount to NFTs whose liquidity is already 0.After adding the proportionate amounts to all non-zero liquidities it tries to deposit all ammPositionIdsinto the Core contract.
But the Core.deposit has this statement if (position_.liquidity == 0) revert InvalidParams();, soCore does not accept any NFT with zero liquidity.
In case the liquidity of an existing LpWrapper position's ammPositionIds becomes 0 (due to rounding)then the LpWrapper's deposit and withdraw functions will start getting reverted on every call making thecontract unusable.
Recommendation: Consider ejecting the ammPositionIds from the array in case its liquidity goes to 0 (&transfer NFT to admin). Or at deployment make sure that liquidities of all ammPositionIds are above acertain threshold so their liquidity going to 0 becomes less likely.
Mellow: Fixed in commit 736eef90.
Cantina Managed: Issue has been fixed as Core.deposit now only reverts when liquidity of all ammPosi-
tionIds positions is zero.
3.4.7 LpWrapper deposits and withdraws may be temporarily bricked in a certain edge case.
Severity: Low Risk
Context: LpWrapper.sol#L255
Description: LpWrapper is expected to be able to work with multiple ammPositionIds at the same time.Due to strategy or rounding down, it can happen so that one of the positions gets to 0 liquidity. Since uponevery withdraw/deposit, all positions are withdrawn and deposited back in Core.sol and Core#depositrequires all positions to have non-zero liquidity, this would force all LpWrapper deposits and withdraws tobe bricked.
Since users will not be able to directly donate liquidity to the position, only way to unbrick it would be fora rebalancer to call rebalance and donate liquidity within the RebalanceCallback contract.
Recommendation: Do not revert on 0 liquidity position deposits.
Mellow: Fixed in commit 09171ab5.
Cantina Managed: Fixed in commit 09171ab5.
3.4.8 Always centering the position if width is changed may lead to unexpected behaviour.
Severity: Low Risk
Context: PulseStrategyModule.sol#L92
Description: If a user has Lazy Ascending or Lazy Descending strategy, it would aim to always rebalancethe position in a single-side liquidity way. If the user has just rebalanced their position and they wish tochange the position's width, it will not be done according to the user's strategy, but rather it will alwaysbe centered.

if (params.width != tickUpper - tickLower)

return _centeredPosition(tick, params.width, params.tickSpacing);

Recommendation: Mellow: Acknowledged.
Cantina Managed: Acknowledged.

13

https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/utils/LpWrapper.sol#L95
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/Core.sol#L123
https://github.com/mellow-finance/mellow-alm-toolkit/tree/736eef90ecfa896b12b5f193e68bf95030eb475e
https://github.com/mellow-finance/mellow-alm-toolkit/blob/fb5cfc1fe3b92135240e9fdb5f6271b4648c4d9f/src/utils/LpWrapper.sol#L255
https://github.com/mellow-finance/mellow-alm-toolkit/commit/09171ab5a5a5bb48604a9f00cbfc22d048ae3015
https://github.com/mellow-finance/mellow-alm-toolkit/commit/09171ab5a5a5bb48604a9f00cbfc22d048ae3015
https://github.com/mellow-finance/mellow-alm-toolkit/blob/fb5cfc1fe3b92135240e9fdb5f6271b4648c4d9f/src/modules/strategies/PulseStrategyModule.sol#L92

3.4.9 rebalancemight unnecessarily revert when rebalancing multiple positions
Severity: Low Risk
Context: VeloOracle.sol#L29
Description: When rebalancing multiple positions, for each position ensureNoMEV is called to checkagainst pool price manipulations, according to each position's own securityParams. When multiplepositions are being rebalanced, if only one of them puts unreasonable securityParams, it will cause thewhole transaction to revert and all rebalances to fail.
Recommendation: In case MEV is detected, consider continuing the rebalancing for other positions.
Mellow: Acknowledged.
Cantina Managed: Acknowledged.
3.4.10 LpWrapper contracts can be deployed without oracle security parameters
Severity: Low Risk
Context: VeloDeployFactory.sol#L60
Description: The Mellow protocol utilizes oracle SecurityParams to prevent price manipulation attacks.Currently it is possible for the admin the set empty SecurityParams for a tickSpacing using the updateDe-
positParams function. Hence it is also possible for the OPERATOR to deploy an LpWrapper for a CLPool withempty SecurityParams. That kind of LpWrapper will be susceptible to price manipulation attacks. Sinceonly one LpWrapper can be deployed per CLPool and LpWrappermanages pooled funds of users, that sce-nario won't be ideal.
Recommendation: Consider enforcing that the length of DepositParams.SecurityParams is not zero:

function updateDepositParams(

int24 tickSpacing,

ICore.DepositParams memory params

) external {

_requireAdmin();

+ if (params.securityParams.length == 0) revert InvalidParams();

_tickSpacingToDepositParams[tickSpacing] = params;

}

Mellow: Fixed 736eef90.
Cantina Managed: The VeloDeployFactory.createStrategy now validates that
params.securityParams.length is not zero.
3.4.11 Unoptimal use of predetermined initialLiquidity for LpWrapper creation
Severity: Low Risk
Context: VeloDeployFactory.sol#L132
Description: The VeloDeployFactory._mint function uses a prefixed and same amount of initialLiq-
uidity for all ERC20 tokens (with different decimals) which is not optimal. The initialLiquidity whichworks for WETH-OP pool will not work for USDC-USDT pool, as the computed amount0 and amount1 for thelatter one will be significantly larger.
This initial liquidity gets locked in the LpWrapper contract forever so if the amount0 and amount1 are signifi-cantly large then it will be difficult for strategy creator to lock that much amount of funds.
Admin will often need to adjust the initialLiquidity param every time a strategy needs to be deployedfor a token pair.
Recommendation: Since VeloDeployFactory.createStrategy is an access restricted function considertaking the initialLiquidity as input for every strategy deployment.
Mellow: Fixed in commit 736eef90.
Cantina Managed: Issue has been fixed as the mechanism to take individual token0 and token1amounts from the caller of VeloDeployFactory.createStrategy has been removed. Now the

14

https://github.com/mellow-finance/mellow-alm-toolkit/blob/fb5cfc1fe3b92135240e9fdb5f6271b4648c4d9f/src/oracles/VeloOracle.sol#L29
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/utils/VeloDeployFactory.sol#L60
https://github.com/mellow-finance/mellow-alm-toolkit/tree/736eef90ecfa896b12b5f193e68bf95030eb475e
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/utils/VeloDeployFactory.sol#L132
https://github.com/mellow-finance/mellow-alm-toolkit/tree/736eef90ecfa896b12b5f193e68bf95030eb475e

VeloDeployFactory.createStrategy function takes an amm position NFT from the caller. Hence creatingthe initial position with individual token amounts is not needed.
3.4.12 During strategy creation the rewardToken should be fetched dynamically
Severity: Low Risk
Context: VeloDeployFactory.sol#L245
Description: The VeloDeployFactory.Storage.MutableParams.rewardsToken stores the reward token ad-dress which is required at the time of StakingRewards contract deployment. This is the address of ERC20tokens which are received from Gauge as rewards.
Technically the reward token of a Gauge can be different for every Gauge instance (see CLGaugeFac-tory.sol#L49).
So the reward token address should bedynamically readby calling ICLGauge(pool.gauge()).rewardToken()instead of storing it as a fixed parameter. This reduces chance of setting an incorrect token.
Recommendation: Consider reading the reward token address from Gauge dynamically.

address farm = s.immutableParams.helper.createStakingRewards(

s.mutableParams.farmOwner,

s.mutableParams.farmOperator,

- s.mutableParams.rewardsToken,

+ ICLGauge(pool.gauge()).rewardToken(),

address(lpWrapper)

);

Mellow: Fixed 736eef90.
Cantina Managed: Issue has been fixed as the rewardToken address is now being read from Gauge dy-namically.
3.4.13 The LpWrapper::OPERATOR role is not revoked in VeloDeployFactoryHelper.createLpWrapperfunction
Severity: Low Risk
Context: DefaultAccessControl.sol#L24 VeloDeployFactoryHelper.sol#L26
Description: The LpWrapper contract inherits DefaultAccessControl. When the VeloDeployFactory-

Helper deploys a new LpWrapper the OPERATOR is granted automatically to the VeloDeployFactoryHelper.This role is not revoked after the deployment of LpWrapper.
Recommendation: Consider revoking the LpWrapper::OPERATOR role in VeloDeployFactory-

Helper.createLpWrapper function:
wrapper.grantRole(wrapper.OPERATOR(), operator);

+ wrapper.revokeRole(wrapper.OPERATOR(), address(this));

wrapper.revokeRole(wrapper.ADMIN_DELEGATE_ROLE(), address(this));

Mellow: Fixed in commit 736eef90.
Cantina Managed: Issue has been fixed as the OPERATOR role is now renounced in VeloDeployFactory-

Helper.createLpWrapper function. .

15

https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/utils/VeloDeployFactory.sol#L245
https://github.com/velodrome-finance/slipstream/blob/4fe6f626f850bd03390af18fd84a56de29adcc5b/contracts/gauge/CLGaugeFactory.sol#L49
https://github.com/velodrome-finance/slipstream/blob/4fe6f626f850bd03390af18fd84a56de29adcc5b/contracts/gauge/CLGaugeFactory.sol#L49
https://github.com/mellow-finance/mellow-alm-toolkit/tree/736eef90ecfa896b12b5f193e68bf95030eb475e
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/utils/DefaultAccessControl.sol#L24
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/utils/VeloDeployFactoryHelper.sol#L26
https://github.com/mellow-finance/mellow-alm-toolkit/tree/736eef90ecfa896b12b5f193e68bf95030eb475e

3.4.14 Withdrawal flow of users will get broken if their position's CallbackParams are set as null
Severity: Low Risk
Context: Core.sol#L98 VeloAmmModule.sol#L139
Description: In case a user creates a position in Core with non-null CallbackParams and then sets thoseparams to null value then his withdraw transaction cannot be processed. The opposite situation is alsopossible when a position gets created will null callback params which then gets updated to a non-nullvalue.
Scenario:

• User deposits his liquidity NFTs into Core with address 0x1234... as the CallbackParams.gaugeaddress. The deposited NFT gets staked into the gauge.
• User sets his position's CallbackParams as null (callbackParams.length = 0) using the setPosition-
Params function.

• Now when user calls Core.withdraw the Core contract will try to return the NFT to user withoutpulling it from gauge, which will result in a revert.
Recommendation: Consider not allowing new callback params to be null if they were not null previously(and vice versa). Also if there is no explicit need to change CallbackParams of a position then remove thisfeature from the contract.
Mellow: Fixed commit 736eef90.
Cantina Managed: Issue has been fixed as the CallbackParams cannot be set as null now. Also the
CallbackParams.gauge address is being validated.
3.4.15 Invalid ManagedPositionInfos can be created in Core

Severity: Low Risk
Context: Core.sol#L117
Description: The deposit function iterates over the DepositParams.ammPositionIds array to pull liquidityNFT tokens from caller. But in case this ammPositionIds array is provided as an empty array then noNFTs will be pulled from caller but still an ManagedPositionInfo struct will be created and pushed into
_positions array.
Hence malicious users can create infinite invalid and unusable ManagedPositionInfo positions in Corecontract.
Recommendation: Consider validating that the length of ammPositionIds is not zero.
if (params.ammPositionIds.length == 0) revert InvalidParams();

Mellow: Fixed in commit 736eef90.
Cantina Managed: Issue has been fixed as the Core.deposit function now implements a hasLiquidityboolean flag. In case the length of DepositParams.ammPositionIds is 0 then the function will revert.
3.4.16 Lack of authorization for functions intended to be delegatecalled
Severity: Low Risk
Context: VeloAmmModule.sol#L189, VeloAmmModule.sol#L134, VeloDepositWithdrawModule.sol#L17,VeloDepositWithdrawModule.sol#L48
Description: The protocol often uses module contracts with some functions which are intended to onlybe executed using delegatecall from other contracts in the system. This can lead to unexpected effectswhen the functions are called directly.
VeloAmmModule.transferFrom can be called by anyone to transfer any positionManager tokens arbitrarily.In case anyone approves this contract instead of the Core contract which is delegatecalling it, their tokenscan be stolen.

16

https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/Core.sol#L98
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/modules/velo/VeloAmmModule.sol#L139
https://github.com/mellow-finance/mellow-alm-toolkit/tree/736eef90ecfa896b12b5f193e68bf95030eb475e
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/Core.sol#L117
https://github.com/mellow-finance/mellow-alm-toolkit/tree/736eef90ecfa896b12b5f193e68bf95030eb475e
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/modules/velo/VeloAmmModule.sol#L189
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/modules/velo/VeloAmmModule.sol#L134
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/modules/velo/VeloDepositWithdrawModule.sol#L17
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/modules/velo/VeloDepositWithdrawModule.sol#L48

function transferFrom(

address from,

address to,

uint256 tokenId

) external virtual override {

INonfungiblePositionManager(positionManager).transferFrom(

from,

to,

tokenId

);

}

Similarly, in VeloAmmModule.beforeRebalance, users can skim any ERC20 tokens which end up in this con-tract since they can arbitrarily control the parameters. Furthermore, users who call VeloDepositWith-
drawModule.deposit directly can have their position withdrawn by anyone in VeloDepositWithdrawMod-

ule.withdraw.
Recommendation: Ensure these functions can only be delegatecalled by enforcing that address(this)is not the contract address, e.g. by using a modifier like the following:
// NOTE: This code is untested

address constant THIS = address(this);

modifier onlyDelegateCall() {

if (address(this) == THIS) revert NOT_DELEGATE_CALL();

}

Mellow: Acknowledged.
Cantina Managed: Acknowledged.
3.4.17 rewardsTokenmay cause rounding issues if not 18 decimals
Severity: Low Risk
Context: VeloDeployFactory.sol#L64-L67
Description: ICLGauge.notifyRewardWithoutClaim documents the following:
/// Assumes gauge reward tokens is 18 decimals.

/// If not 18 decimals, rewardRate may have rounding issues.

The reward token used with the CLGauge contract is _contractStorage().mutableParams.rewardsToken,which is set in VeloDeployFactory.updateMutableParams:
function updateMutableParams(MutableParams memory params) external {

_requireAdmin();

_contractStorage().mutableParams = params;

}

Recommendation: To avoid rounding issues with non-18-decimal tokens, it's recommended that logicis added in VeloDeployFactory.updateMutableParams to validate that params.rewardsToken has 18 deci-mals.
Mellow: Fixed in 8c007d5e.
Cantina Managed: Issue is fixed by using gauge.rewardToken instead of arbitrary token:

17

https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/utils/VeloDeployFactory.sol#L64-L67
https://github.com/mellow-finance/mellow-alm-toolkit/commit/8c007d5e3006128fd63959cce70ad329cab4e462

address rewardToken = ICLGauge(gauge).rewardToken(); // <--- here ---

poolAddresses.synthetixFarm = immutableParams

.helper

.createStakingRewards(

mutableParams.farmOwner,

mutableParams.farmOperator,

rewardToken, // <--- here ---

address(lpWrapper)

);

depositParams.callbackParams = abi.encode(

IVeloAmmModule.CallbackParams({

farm: poolAddresses.synthetixFarm,

gauge: address(gauge),

counter: address(

new Counter(

mutableParams.farmOperator,

address(core),

rewardToken, // <--- here ---

poolAddresses.synthetixFarm

)

)

})

);

and rewardsToken has been removed from:
struct MutableParams {

address lpWrapperAdmin; // Admin address for the LP wrapper

address lpWrapperManager; // Manager address for the LP wrapper

address farmOwner; // Owner address for the farm

address farmOperator; // Operator address for the farm (compounder)

uint256 minInitialLiquidity; // Minimum initial liquidity for the LP wrapper

}

Fix persist in 736eef90ecfa896b12b5f193e68bf95030eb475e.
3.4.18 rebalancemay revert for positions with multiple ammPositionIds

Severity: Low Risk
Context: PulseStrategyModule.sol#L42-L44
Description: It's possible to create a managed position in Corewith an arbitrary number of ammPosition-
Ids, but PulseStrategyModule only supports one:
if (info.ammPositionIds.length != 1) {

revert InvalidLength();

}

Presumably, the intention here is to be able to use the same Core contract code on different deploymentswith different strategy modules (note that the strategyModule is immutable). However, the problem isthat this allows for users to deposit multiple ammPositionIds on the deployment using PulseStrategy-

Module even though rebalance will always revert.
Recommendation: If the intention is to use the same Core contract code on different deployments withdifferent strategymodules, include a parameter in strategyModule.validateStrategyParams to pass amm-
PositionsIds.length, where in PulseStrategyModule.validateStrategyParams, we revert if length !=

1.
Mellow: Acknowledged.
Cantina Managed: Acknowledged.

18

https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/modules/strategies/PulseStrategyModule.sol#L42-L44

3.4.19 Anyone can skim ERC20 tokens from the Core contract
Severity: Low Risk
Context: VeloAmmModule.sol#L150-L172
Description: In VeloAmmModule.beforeRebalance, which is delegatecalled by Core to retrieve a tokenIdfrom the gauge contract, we retrieve rewards from the gauge and transfer those rewards, excluding aprotocol fee, to the farm contract where stakers can later receive the rewards.
ICLGauge(callbackParams_.gauge).getReward(tokenId);

address token = ICLGauge(callbackParams_.gauge).rewardToken();

uint256 balance = IERC20(token).balanceOf(address(this));

if (balance > 0) {

uint256 protocolReward = FullMath.mulDiv(

protocolParams_.feeD9,

balance,

D9

);

if (protocolReward > 0) {

IERC20(token).safeTransfer(

protocolParams_.treasury,

protocolReward

);

}

balance -= protocolReward;

if (balance > 0) {

IERC20(token).safeTransfer(callbackParams_.farm, balance);

ICounter(callbackParams_.counter).add(balance);

}

}

The problem is that the callbackParams, which contain the gauge and farm contracts, are only validatedto not be address(0), thus users can arbitrarily set these addresses:
if (params_.farm == address(0)) revert AddressZero();

if (params_.gauge == address(0)) revert AddressZero();

if (params_.counter == address(0)) revert AddressZero();

An attack may proceed as follows:
• Attacker sets gauge to be a contract they control which returns any token they decide when reward-

Token() is called.
• Attacker sets farm as an address they control to receive funds.
• Attacker makes a deposit with above callbackParams and immediately withdraws the position, trig-gering the beforeRebalance hook.

The result of this is that any ERC20 tokens in the Core contract can be withdrawn by the attacker.
Recommendation: Include an allowlist of contracts to be used for each of the callbackParams in VeloAm-

mModule.validateCallbackParams.
Mellow: Fixed in commit 06b459b2. validateCallbackParams now performs the following check:
function validateCallbackParams(bytes memory params) external view {

// ...

ICLPool pool = ICLGauge(params_.gauge).pool();

if (!factory.isPair(address(pool))) revert InvalidGauge();

if (pool.gauge() != params_.gauge) revert InvalidGauge();

}

So before _positions[id] gets storied in the storage, it is verified that the gauge and its associated poolare stemming from the the registered factory contract in VeloAmmModule.
Cantina Managed: Issue is fixed by enforcing that a valid gauge is used. Fix persist in commit 736eef90.

19

https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/modules/velo/VeloAmmModule.sol#L150-L172
https://github.com/mellow-finance/mellow-alm-toolkit/commit/06b459b29c02d6a0c96bbbbea54cdb4aba1423a8
https://github.com/mellow-finance/mellow-alm-toolkit/tree/736eef90ecfa896b12b5f193e68bf95030eb475e

3.5 Gas Optimization
3.5.1 0 can be passed as lower and upper ticks when strategyModule.calculateTarget in VeloDe-

ployFactory._mint

Severity: Gas Optimization
Context: VeloDeployFactory.sol#L118-L119
Description: In this context we call strategyModule.calculateTarget with the following parameters:
(/*...*/) = strategyModule.calculateTarget(

// ...

type(int24).min, // tickLower

type(int24).min, // tickUpper

// ...

);

We could have also passed 0 here. Since strategyParams.intervalWidth should be non-zero. And in
PulseStrategyModule.calculateTarget --> _calculatePosition we enter into the following if block:
if (params.width != tickUpper - tickLower) // <--- tickUpper and tickLower are equal either in the

`type(int24).min` case or even when passing `0`.↪→

return _centeredPosition(tick, params.width, params.tickSpacing);

and as long as tickUpper == tickLower the above statement is equivalent to params.width != 0. Theonly other concern is that when “ are calculated we would want to not fall into the following if block:
if (targetTickLower == tickLower && targetTickUpper == tickUpper)

return (false, target);

or equivalently:
if (targetTickLower == 0 && targetTickUpper == 0)

return (false, target);

But this conditional statement cannot be true, since for centred positions the difference between thetarget upper and lower ticks are params.width which is non-zero.
Recommendation: To lower the gas costs we can provide 0 as both the upper and lower ticks paramsprovided to strategyModule.calculateTarget:

Since the above change depends on many different indirect invariants/conditions, ifany of those change in the future it might break the assumption where we can replace
type(int24).min with 0.

Mellow: target in createStrategy is calculated as:
(

bool isRebalanceRequired,

ICore.TargetPositionInfo memory target

) = immutableParams.strategyModule.calculateTarget(

tick,

0,

0,

strategyParams

);

using the recommendation.
Cantina: Fixed in commit 736eef90.

20

https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/utils/VeloDeployFactory.sol#L118-L119
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/utils/VeloDeployFactory.sol#L195-L197
https://github.com/mellow-finance/mellow-alm-toolkit/tree/736eef90ecfa896b12b5f193e68bf95030eb475e

3.5.2 Redundant allowance and balance check before transfer
Severity: Gas Optimization
Context: VeloDeployFactory.sol#L74-L92
Description: In VeloDeployFactory._prepareToken, prior to transferring tokens from msg.sender, wecheck whether the allowance to address(this) and balanceOf the sender are sufficient to execute thetransfer, reverting if the amounts are insufficient:
uint256 allowance = IERC20(token).allowance(msg.sender, address(this));

uint256 userBalance = IERC20(token).balanceOf(msg.sender);

if (allowance < amount || userBalance < amount)

revert(

string(

abi.encodePacked(

"Invalid ",

IERC20Metadata(token).symbol(),

" allowance or balance. Required: ",

Strings.toString(amount),

"; User balance: ",

Strings.toString(userBalance),

"; User allowance: ",

Strings.toString(allowance),

"."

)

)

);

IERC20(token).safeTransferFrom(msg.sender, address(this), amount);

These balance and allowance checks are redundant because they're checked again in transferFrom re-gardless.
Note: If the intention here is to have a readable revert message and the value of that outweighs the additionalgas cost, then this is an acceptable design decision.
Recommendation: Simply execute the safeTransferFrom without the redundant checks:
- uint256 allowance = IERC20(token).allowance(msg.sender, address(this));

- uint256 userBalance = IERC20(token).balanceOf(msg.sender);

- if (allowance < amount || userBalance < amount)

- revert(

- string(

- abi.encodePacked(

- "Invalid ",

- IERC20Metadata(token).symbol(),

- " allowance or balance. Required: ",

- Strings.toString(amount),

- "; User balance: ",

- Strings.toString(userBalance),

- "; User allowance: ",

- Strings.toString(allowance),

- "."

-)

-)

-);

IERC20(token).safeTransferFrom(msg.sender, address(this), amount);

Mellow: Fixed by changing strategy creation mechanism.
Cantina Managed: Issue is no longer present due to aforementioned change to strategy creation.

21

https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/utils/VeloDeployFactory.sol#L74-L92

3.5.3 Redundant zero value state var initialization
Severity: Gas Optimization
Context: Counter.sol#L8
Description: In Counter, we initialize value as 0:
uint256 public value = 0;

However, since the default value for uint256 variables is already 0, this stores the same value which isalready present. A cold SSTORE from a zero value to a zero value like this costs 2200 gas.
Recommendation: Remove the redundant re-initialization:
- uint256 public value = 0;

+ uint256 public value;

Mellow: Acknowledged.
Cantina Managed: Acknowledged.
3.5.4 Off-chain counter mechanism
Severity: Gas Optimization
Context: VeloAmmModule.sol#L170
Description: In VeloAmmModule.beforeRebalance, we increment the Counter contract state by the balanceamount of tokens being transferred to the farm contract by calling Counter.add:
if (balance > 0) {

IERC20(token).safeTransfer(callbackParams_.farm, balance);

ICounter(callbackParams_.counter).add(balance);

}

This requires both a cold CALL and a cold SSTORE, with the CALL costing 2600 gas and the SSTORE costing5000 gas (or 20000 gas the first time add is called).
Recommendation: If the amount tracked by Counter is not directly needed on-chain, a significant amountof gas could be saved by emitting an event instead and indexing the amount off-chain by listening for theevent.
Mellow: Acknowledged.
Cantina Managed: Acknowledged.
3.6 Informational
3.6.1 Lack of testing
Severity: Informational
Context: test/
Description: Throughout the codebase, there are someareas inwhich the testing is insufficient to providea high degree of confidence in the logic correctness. Some particular areas of concern:

• Core.rebalance.
• VeloDeployFactory (lack of unit tests).

Additionally, it would be good to see a wider variety of tests that validate not just that the logic succeedsin base cases under normal conditions, but also: negative, fuzzing, and invariant tests.
Recommendation: Add testing throughout the codebase with a focus on the above listed areas andmethods.
Mellow: Acknowledged.
Cantina Managed: Acknowledged.

22

https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/utils/Counter.sol#L8
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/modules/velo/VeloAmmModule.sol#L170
https://github.com/mellow-finance/mellow-alm-toolkit/tree/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/test

3.6.2 Some of the _tickSpacingToDepositParams fields are unused
Severity: Informational
Context: VeloDeployFactory.sol#L15
Description: _tickSpacingToDepositParams has the following value form:
struct DepositParams {

uint256[] ammPositionIds;

address owner;

uint16 slippageD4;

bytes callbackParams;

bytes strategyParams;

bytes securityParams;

}

Recommendation: Even though only the slippageD4 and securityParams values are actually used in
createStrategy and the other fields are calculated just-in-time during the flow of createStrategy andany other stored values are ignored for those fields.
Perhaps _tickSpacingToDepositParams can be renamed to _tickSpacingToSlippageAndSecurityParamswith its value of the following form:
struct SlippageAndSecurityParams {

uint16 slippageD4;

bytes securityParams;

}

Mellow: _tickSpacingToDepositParams storage parameter has been removed and the input variable to
createStrategy has been changed to DeployParams calldata params:
struct DeployParams {

int24 tickNeighborhood;

uint32 slippageD9;

uint256 tokenId;

bytes securityParams;

IPulseStrategyModule.StrategyType strategyType;

}

and so the flow has also been changed to accommodate only one position instead of having a generalfield of ammPositionIds.
Cantina: Fixed in commit 736eef90.
3.6.3 Unreachable revert statement
Severity: Informational
Context: VeloDeployFactory.sol#L128
Description: In this context we have:
(bool isRebalanceRequired, ...) = strategyModule.calculateTarget(

tick,

type(int24).min,

type(int24).min,

...

);

if (!isRebalanceRequired) revert InvalidState(); // <--- this should be unreachable

Since the used strategy is IPulseStrategyModule.StrategyType.Original and provided lower and upperticks are equal. But the target ones returned should have a difference of non-zero width.
Recommendation: Perhaps above can be documented and different test cases can be added in the testsuite. The if statement can still stay where it is in case of future implementations as a general IPulseS-
trategyModulemight return different parameters given the same specific input parameters.
Mellow: The require statement has been transformed into:

23

https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/utils/VeloDeployFactory.sol#L15
https://github.com/mellow-finance/mellow-alm-toolkit/tree/736eef90ecfa896b12b5f193e68bf95030eb475e
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/utils/VeloDeployFactory.sol#L128

assert(isRebalanceRequired);

Cantina: Fixed in commit 736eef90.
3.6.4 Some LpWrapper invariants
Severity: Informational
Context: LpWrapper.sol#L184, LpWrapper.sol#L258
Description: The info.owner will be just address(this) in this context. as during the lifetime of the
LpWrapper contract, the owner parameter stays the same as the contract.
In fact during the lifetime of LpWrapper the followings stay the same for any position id of the Core contractit consumes:

• property (cached ∆i tickSpacing for the cases used in the current codebase).
• pool (which means the T0,T1,∆i stay the same).
• owner (or address(this)).

Recommendation: Perhaps these invariants can be tested in the test suite. Also as an optimisationand/or hardcoded invariant the info.owner can be replaced by address(this).
Mellow: Acknowledged.
Cantina Managed: Acknowledged.
3.6.5 Centralization risk of LpWrapper contract
Severity: Informational
Context: LpWrapper.sol#L268
Description: The LpWrapper contract combines all the funds deposited by all users into a single liquidityposition. The addresses possessing the ADMIN_ROLE and ADMIN_DELEGATE_ROLE of LpWrapper hold the rightto change the position params of LpWrapper's position in Core.
The position params include:

• StrategyParams: parameters which determines the rebalancing strategy of entire pooled position:
– which includes StrategyType, tickNeighborhood, tickSpacing & width.

• CallbackParams:
– gauge - the Velo gauge to which the entire pooled position is deposited into.
– farm - address to which all rewards are sent.
– counter - contract which counts the sent rewards.

• SecurityParams: parameters which determine the price manipulation protection of position.
These parameters can be changed using the LpWrapper.setPositionParams function. The control oversuch sensitive parameters can pose a centralization risk for the users.
Recommendation: It is advised that a Timelock contract must be used to govern the admin-only featuresof LpWrapper contract.
Mellow: Acknowledged.
Cantina Managed: Acknowledged.

24

https://github.com/mellow-finance/mellow-alm-toolkit/tree/736eef90ecfa896b12b5f193e68bf95030eb475e
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/utils/LpWrapper.sol#L184
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/utils/LpWrapper.sol#L258
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/utils/LpWrapper.sol#L268

3.6.6 Inconsistent handling of ammPositionIds in VeloDeployFactory.createStrategy

Severity: Informational
Context: VeloDeployFactory.sol#L282
Description: In VeloDeployFactory.createStrategy, at VeloDeployFactory.sol#L282 the function tries toiterate over ammPositionIds array while a few statements back at VeloDeployFactory.sol#L231 the func-tion itself declared the ammPositionIds as an array of length 1. This behaviour is inconsistent and shouldbe avoided.
Recommendation: Consider asserting that ammPositionIds.length == 1 and read the
ammPositionIds[0] value directly without iteration.
Mellow: Fixed in commit 736eef90.
Cantina Managed: The impacted code has been removed.
3.6.7 Invalid validation applied in VeloOracle.getOraclePrice

Severity: Informational
Context: VeloOracle.sol#L73-L74
Description: The getOraclePrice perform this check:
if (previousObservationIndex == observationCardinality) revert NotEnoughObservations();

As per the implementation of CLPool it can be observed that observationIndex will always be less than
observationCardinality. Hence previousObservationIndex will always be less than observationCardi-

nality. So the above mentioned validation check will always return false.
Recommendation: Consider removing the revert statement or convert it to an assert statement.
Mellow: Fixed commit 736eef90.
Cantina Managed: The impacted code segment has now been removed.
3.6.8 Shadowed function names
Severity: Informational
Context: LpWrapper.sol#L37-L43
Description: The LpWrapper constructor includes the parameters name and symbol which are used toprovide to the inherited ERC20 contract constructor.
constructor(

ICore core_,

IAmmDepositWithdrawModule ammDepositWithdrawModule_,

string memory name,

string memory symbol,

address admin

) ERC20(name, symbol) DefaultAccessControl(admin) {

These parameters, however, shadow the name and symbol functions in the ERC20 contract:
function name() public view virtual override returns (string memory) {

return _name;

}

function symbol() public view virtual override returns (string memory) {

return _symbol;

}

This doesn't pose any direct risk, but may cause problems later on with readability and maintainability.
Recommendation: Change the parameters to avoid shadowing the function names, e.g.:

25

https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/utils/VeloDeployFactory.sol#L282
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/utils/VeloDeployFactory.sol#L282
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/utils/VeloDeployFactory.sol#L231
https://github.com/mellow-finance/mellow-alm-toolkit/tree/736eef90ecfa896b12b5f193e68bf95030eb475e
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/oracles/VeloOracle.sol#L73-L74
https://github.com/mellow-finance/mellow-alm-toolkit/tree/736eef90ecfa896b12b5f193e68bf95030eb475e
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/utils/LpWrapper.sol#L37-L43

constructor(

ICore core_,

IAmmDepositWithdrawModule ammDepositWithdrawModule_,

- string memory name,

+ string memory name_,

- string memory symbol,

+ string memory symbol_,

address admin

-) ERC20(name, symbol) DefaultAccessControl(admin) {

+) ERC20(name_, symbol_) DefaultAccessControl(admin) {

Mellow: Fixed in commit 831a70d3.
Cantina Managed: Issue is fixed as recommended.
3.6.9 Lack of input validation
Severity: Informational
Context: LpWrapper.sol#L64-L69, LpWrapper.sol#L194-L199
Description: LpWrapper.deposit/withdraw both do not validate that the amounts to deposit and with-draw are non-zero. We can see in the following proof of concepts, which can be added to LpWrapper.t.sol,that execution will successfully complete:

• deposit:
function testDepositZero() external {

pool.increaseObservationCardinalityNext(2);

lpWrapper = new LpWrapper(

core,

depositWithdrawModule,

"Wrapper LP Token",

"WLP",

Constants.OWNER

);

uint256 tokenId = mint(

pool.token0(),

pool.token1(),

pool.tickSpacing(),

pool.tickSpacing() * 20,

10000,

pool

);

uint256 positionId = _depositToken(tokenId, address(lpWrapper));

lpWrapper.initialize(positionId, 10000);

vm.startPrank(Constants.DEPOSITOR);

deal(pool.token0(), Constants.DEPOSITOR, 1 ether);

deal(pool.token1(), Constants.DEPOSITOR, 1 ether);

IERC20(pool.token0()).approve(address(lpWrapper), 1 ether);

IERC20(pool.token1()).approve(address(lpWrapper), 1 ether);

vm.expectRevert(abi.encodeWithSignature("InsufficientLpAmount()"));

lpWrapper.deposit(1 ether, 1 ether, 100 ether, Constants.DEPOSITOR);

uint256 totalSupplyBefore = lpWrapper.totalSupply();

IAmmModule.AmmPosition memory positionBefore = ammModule.getAmmPosition(

tokenId

);

vm.stopPrank();

lpWrapper.deposit(0, 0, 0, Constants.DEPOSITOR);

}

• withdraw:
function testWithdrawZero() external {

pool.increaseObservationCardinalityNext(2);

lpWrapper = new LpWrapper(

core,

depositWithdrawModule,

"Wrapper LP Token",

"WLP",

Constants.OWNER

);

26

https://github.com/mellow-finance/mellow-alm-toolkit/commit/831a70d31d3653a975248b7373f998b9fbeab5a7
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/utils/LpWrapper.sol#L64-L69
https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/utils/LpWrapper.sol#L194-L199

uint256 tokenId = mint(

pool.token0(),

pool.token1(),

pool.tickSpacing(),

pool.tickSpacing() * 20,

10000,

pool

);

uint256 positionId = _depositToken(tokenId, address(lpWrapper));

lpWrapper.initialize(positionId, 10000);

vm.startPrank(Constants.DEPOSITOR);

deal(pool.token0(), Constants.DEPOSITOR, 1 ether);

deal(pool.token1(), Constants.DEPOSITOR, 1 ether);

IERC20(pool.token0()).approve(address(lpWrapper), 1 ether);

IERC20(pool.token1()).approve(address(lpWrapper), 1 ether);

lpWrapper.deposit(1 ether, 1 ether, 0.1 ether, Constants.DEPOSITOR);

uint256 totalSupplyBefore = lpWrapper.totalSupply();

IAmmModule.AmmPosition memory positionBefore = ammModule.getAmmPosition(

tokenId

);

uint256 depositorBalance = lpWrapper.balanceOf(Constants.DEPOSITOR);

uint256 balance = lpWrapper.balanceOf(Constants.DEPOSITOR);

vm.stopPrank();

lpWrapper.withdraw(0, 0, 0, Constants.DEPOSITOR);

}

Both of these functions have a very wide surface of execution which increases the risk involved with thembeing executed arbitrarily with 0 values.
Execution of both of these functions executes the beforeRebalance and afterRebalance hooks, similarlyto execution of Core.emptyRebalance, which is a protected function. Further impact has not been discov-ered, but it's recommended that this is mitigated regardless.
Recommendation: Include logic that validates that the provided parameters are non-zero, e.g.:
if (lpAmount == 0 || minAmount0 == 0 || minAmount1 == 0) revert NON_ZERO_AMOUNTS();

Mellow: Acknowledged.
Cantina Managed: Acknowledged.
3.6.10 VeloDeployFactory tickSpacing collision possible in mappings
Severity: Informational
Context: VeloDeployFactory.sol#L13-L15
Description: VeloDeployFactory supports multiple pools which can have overlapping tickSpacing usedfor strategy creation. Prior to creating strategies with createStrategy, we set the strategy and depositparams according to the tickSpacing intended to be used with them during creation.
Updating strategy and deposit params according to tickSpacing:

27

https://github.com/mellow-finance/mellow-alm-toolkit/blob/8413fc09a73d2f9e09c9c2706a78d4cdc3a136b3/src/utils/VeloDeployFactory.sol#L13-L15

/// @inheritdoc IVeloDeployFactory

function updateStrategyParams(

int24 tickSpacing,

StrategyParams memory params

) external {

_requireAdmin();

_tickSpacingToStrategyParams[tickSpacing] = params;

}

/// @inheritdoc IVeloDeployFactory

function updateDepositParams(

int24 tickSpacing,

ICore.DepositParams memory params

) external {

_requireAdmin();

_tickSpacingToDepositParams[tickSpacing] = params;

}

Retrieving strategy and deposit params in createStrategy according to the tickSpacing used:
StrategyParams memory strategyParams = _tickSpacingToStrategyParams[

tickSpacing

];

// ...

ICore.DepositParams

memory depositParams = _tickSpacingToDepositParams[tickSpacing];

Sincemultiple pools are supported which can have overlapping tickSpacing, we can run into a collision insetting strategy and deposit params for two different pools with the same tickSpacingwhere the secondwrite will overwrite the first one, causing both strategies to be deployed with the overwritten deposit andstrategy params.
Listing as informational severity since Mellow has indicated that usage will be aligned such that we don'trun into this problem, which may only be caused by trusted actors.
Recommendation: Aligned with Mellow's indicated modified usage, internal facing documentationshould be written that clearly indicates that this collision is possible and how to avoid it. Alternatively, asafer solution would be to use 3D mappings which include the pool address, e.g.:
mapping(address => mapping(int24 => IVeloDeployFactory.StrategyParams))

private _tickSpacingToStrategyParams;

mapping(address => mapping(int24 => ICore.DepositParams)) private _tickSpacingToDepositParams;

Mellow: Fixed by modifying VeloDeployFactory to no longer need these variables.
Cantina: Issue is no longer present as a result of VeloDeployFactory changes. Fixed in commit 736eef90

28

https://github.com/mellow-finance/mellow-alm-toolkit/tree/736eef90ecfa896b12b5f193e68bf95030eb475e

	Introduction
	About Cantina
	Disclaimer
	Risk assessment
	Severity Classification

	Security Review Summary
	Findings
	Critical Risk
	Lack of input validation on callbackParams.gauge allows for theft of positions
	If operatorFlag == false, attacker can steal all NFTs within the contract.

	High Risk
	getOraclePrice is prone to manipulation

	Medium Risk
	RebalanceParams.callback can steal accrued fees of liquidity NFTs during rebalance
	LpWrapper deposits and withdraws will be bricked if Velodrome gauge is killed.
	Usage of a TWAP price instead of the exact current sqrtPriceX96 will lead to wrong calculation of token amounts within the position
	When depositing a position into a gauge, accrued fees are sent to Core.sol
	Denial of service attack on LpWrapper's deposit and withdraw functions
	Unsafe max deadline provided
	Lack of consideration of time in ensureNoMEV leads to unexpected reverts
	Unexpected ETH transfer DoS

	Low Risk
	Multi-block MEV may still be possible with ensureNoMEV
	The params provided to VeloDeployFactory.updateStrategyParams is not validated
	LpWrapper's initialize can be called by anyone to set and fix most of the relevant parameters
	Checks missing for the derived contracts addresses in LpWrapper.constructor
	Unusability of LpWrapper's deposit and withdraw functions in case the contract is initialized with zero initialTotalSupply
	Unusability of LpWrapper's deposit and withdraw functions in case a position's liquidity becomes 0
	LpWrapper deposits and withdraws may be temporarily bricked in a certain edge case.
	Always centering the position if width is changed may lead to unexpected behaviour.
	rebalance might unnecessarily revert when rebalancing multiple positions
	LpWrapper contracts can be deployed without oracle security parameters
	Unoptimal use of predetermined initialLiquidity for LpWrapper creation
	During strategy creation the rewardToken should be fetched dynamically
	The LpWrapper::OPERATOR role is not revoked in VeloDeployFactoryHelper.createLpWrapper function
	Withdrawal flow of users will get broken if their position's CallbackParams are set as null
	Invalid ManagedPositionInfos can be created in Core
	Lack of authorization for functions intended to be delegatecalled
	rewardsToken may cause rounding issues if not 18 decimals
	rebalance may revert for positions with multiple ammPositionIds
	Anyone can skim ERC20 tokens from the Core contract

	Gas Optimization
	0 can be passed as lower and upper ticks when strategyModule.calculateTarget in VeloDeployFactory._mint
	Redundant allowance and balance check before transfer
	Redundant zero value state var initialization
	Off-chain counter mechanism

	Informational
	Lack of testing
	Some of the _tickSpacingToDepositParams fields are unused
	Unreachable revert statement
	Some LpWrapper invariants
	Centralization risk of LpWrapper contract
	Inconsistent handling of ammPositionIds in VeloDeployFactory.createStrategy
	Invalid validation applied in VeloOracle.getOraclePrice
	Shadowed function names
	Lack of input validation
	VeloDeployFactory tickSpacing collision possible in mappings

