
Sablier Flow
Security Review

Cantina Managed review by:
Zach Obront, Lead Security Researcher
RustyRabbit, Security Researcher

October 20, 2024

Contents
1 Introduction 21.1 About Cantina . 21.2 Disclaimer . 21.3 Risk assessment . 21.3.1 Severity Classification . 2
2 Security Review Summary 3

3 Findings 43.1 High Risk . 43.1.1 Sender can brick stream by forcing overflow in debt calculation 43.2 Medium Risk . 53.2.1 isTransferable() will succeed and return false for non-existent streams 53.2.2 New protocol fee applies retroactively on debt before fee change 53.2.3 Sender can steal deposits from depositors/recipient via refund 63.3 Low Risk . 73.3.1 depletionTimeOf() can return incorrect time due to unchecked overflow 73.3.2 depletionTimeOf() can fail due to overflowing uint40 result 73.3.3 Reorg attack can steal deposits made shortly after flow creation 83.3.4 depletionTimeOf() returns 0 when still solvent at edge of depletion time 83.3.5 Rounding of snapshotDebt will cause all streams to be slightly underpaid 93.3.6 depletionTimeOf() should not be trusted by on chain integrators 103.3.7 setProtocolFee() does not emit BatchMetadataUpdate to indicate metadata update . 103.4 Informational . 113.4.1 withdrawMax()does not return the actual received amount 11

1

1 Introduction

1.1 About Cantina
Cantina is a security servicesmarketplace that connects top security researchers and solutionswith clients.Learn more at cantina.xyz
1.2 Disclaimer
CantinaManagedprovides a detailed evaluation of the security posture of the code at a particularmomentbased on the information available at the time of the review. While CantinaManaged endeavors to identifyand disclose all potential security issues, it cannot guarantee that every vulnerability will be detected orthat the code will be entirely secure against all possible attacks. The assessment is conducted based onthe specific commit and version of the code provided. Any subsequent modifications to the code mayintroduce new vulnerabilities that were absent during the initial review. Therefore, any changes madeto the code require a new security review to ensure that the code remains secure. Please be advisedthat the Cantina Managed security review is not a replacement for continuous security measures such aspenetration testing, vulnerability scanning, and regular code reviews.
1.3 Risk assessment

Severity Description

Critical Must fix as soon as possible (if already deployed).

High Leads to a loss of a significant portion (>10%) of assets in the protocol, or sig-nificant harm to a majority of users.

Medium Global losses <10% or losses to only a subset of users, but still unacceptable.

Low Losses will be annoying but bearable. Applies to things like griefing attacks thatcan be easily repaired or even gas inefficiencies.

Gas Optimization Suggestions around gas saving practices.

Informational Suggestions around best practices or readability.
1.3.1 Severity Classification

The severity of security issues found during the security review is categorized based on the above table.Critical findings have a high likelihood of being exploited and must be addressed immediately. High find-ings are almost certain to occur, easy to perform, or not easy but highly incentivized thus must be fixedas soon as possible.
Medium findings are conditionally possible or incentivized but are still relatively likely to occur and shouldbe addressed. Low findings a rare combination of circumstances to exploit, or offer little to no incentiveto exploit but are recommended to be addressed.
Lastly, some findings might represent objective improvements that should be addressed but do not im-pact the project’s overall security (Gas and Informational findings).

2

https://cantina.xyz

2 Security Review Summary

Sablier is a token streaming protocol available on Ethereum, Optimism, Arbitrum, Polygon, Ronin,Avalanche, and BSC. It's the first of its kind to have ever been built in crypto, tracing its origins back to2019. Similar to how you can stream a movie on Netflix or a song on Spotify, so you can stream tokensby the second on Sablier.
From Oct 7th to Oct 15th the Cantina team conducted a review of flow on commit hash fbf6ff59.
The Cantina team reviewed Sablier’s flow changes holistically on commit hash 5dc175cc and determinedthat all issues were resolved and no new issues were identified.
The team identified a total of 12 issues in the following risk categories:

• Critical Risk: 0
• High Risk: 1
• Medium Risk: 3
• Low Risk: 7
• Gas Optimizations: 0
• Informational: 1

3

https://github.com/sablier-labs/flow
https://github.com/sablier-labs/flow/tree/fbf6ff5980939d0972b6a83636ecc0ef9dc5d911
https://github.com/sablier-labs/flow/tree/5dc175cca189ba0401b1e877a62e5ca13a85384b

3 Findings

3.1 High Risk
3.1.1 Sender can brick stream by forcing overflow in debt calculation

Severity: High Risk
Context: SablierFlow.sol#L474
Description: The _ongoingDebtOf() internal function is used to calculate the amount of funds owed tothe stream recipient since the last snapshot. As a part of these calculations, the scaledOngoingDebt iscalculated by multiplying the seconds that have passed since the last snapshot by the rate per second.
uint128 scaledOngoingDebt = elapsedTime * ratePerSecond;

Since elapsedTime and scaledOngoingDebt are both uint128, any result of themultiplication that is greaterthan uint128 will overflow and cause a revert.
Note that this multiplication does not require an unrealistically high balance of the token, only for rate-
PerSecond to be set to a high value, which is completely in the control of the sender.
This is a major concern because, once this calculation overflows, any calls to withdraw(), refund(), or toadjust the rate back down will all fail, because they all rely on this function. As a result, once this changehappens, there is nothing anyone can do to receive funds from the stream, and all funds will permanentlybe stuck.
This fact could lead to problems in two situations:
1. It could be abused by a sender who is angry with a recipient to lock all previously streamed fundsthat have not yet been withdrawn, which should be the property of the recipient.
2. It could occur because a ratePerSecond is set to too high of a value accidentally, and then cannot berecovered by either party.

Proof of Concept: The following proof of concept (which can be placed in any file that imports Integra-
tion_Test) demonstrates the issue:
function test_HighRPSRevert() public {

deal(address(usdc), address(this), DEPOSIT_AMOUNT_6D);

usdc.approve(address(flow), DEPOSIT_AMOUNT_6D);

address receiver = makeAddr("receiver");

uint streamId = flow.createAndDeposit({

sender: address(this),

recipient: receiver,

ratePerSecond: UD21x18.wrap(type(uint128).max),

token: usdc,

transferable: true,

amount: DEPOSIT_AMOUNT_6D

});

vm.warp(block.timestamp + 12);

vm.expectRevert();

flow.totalDebtOf(streamId);

vm.expectRevert();

flow.pause(streamId);

vm.expectRevert();

vm.prank(receiver);

flow.withdraw(streamId, receiver, 1);

}

Recommendation: Use a uint256 for scaledOngoingDebt, and carry this type through all functions untilthe value is compared to the balance. At that point, you can safely downcast to uint128.
Sablier: Fixed in PR 296.
Cantina Managed: Confirmed.

4

https://cantina.xyz/code/99ae802b-f05c-4e36-a1d1-240d5146649c/src/SablierFlow.sol#L474
https://github.com/sablier-labs/flow/pull/296

3.2 Medium Risk
3.2.1 isTransferable() will succeed and return false for non-existent streams

Severity: Medium Risk
Context: SablierFlowBase.sol#L184-L186
Description: All the public view functions in SablierFlowBase.sol use the notNull modifier to ensurethat they revert when called for a non-existent stream. For example:
function isPaused(uint256 streamId) external view override notNull(streamId) returns (bool result) {

result = _streams[streamId].ratePerSecond.unwrap() == 0;

}

However, the isTransferable() function is missing this modifier, so will return false instead:
function isTransferable(uint256 streamId) external view override returns (bool result) {

result = _streams[streamId].isTransferable;

}

This contradicts the natspec, which says:
/// @dev Reverts if `streamId` references a null stream.

Proof of Concept:

function test_isTransferableDoesNotRevert() public {

assertEq(flow.isTransferable(2387345), false);

}

Recommendation:
- function isTransferable(uint256 streamId) external view override returns (bool result) {

+ function isTransferable(uint256 streamId) external view override notNull(streamId) returns (bool result) {

result = _streams[streamId].isTransferable;

}

Sablier: The fix for this issue was included in PR 296.
Cantina Managed: Confirmed.
3.2.2 New protocol fee applies retroactively on debt before fee change

Severity: Medium Risk
Context: SablierFlow.sol#L811-L820
Description: The _withdraw() function applies the protocol fee on the withdrawn amount regardless ofwhether the debt was accumulated before or after the fee change.
As such, users may be reluctant to use the protocol since:

• The admin can potentially steal 10% from all users at any time
• Even if the admin is not malicious, users can not have confidence in the fee that will be applied upfront.

Proof of Concept: Add the following to withdraw.t.sol

5

https://cantina.xyz/code/99ae802b-f05c-4e36-a1d1-240d5146649c/src/abstracts/SablierFlowBase.sol#L184-L186
https://github.com/sablier-labs/flow/pull/296
https://cantina.xyz/code/99ae802b-f05c-4e36-a1d1-240d5146649c/src/SablierFlow.sol#L811-L820

function test_withdrawAfterFeeUpdate() external {

uint256 fee = flow.protocolFee(usdc).unwrap();

assertEq(fee, 0);

uint256 streamId = createDefaultStream(usdc);

resetPrank({ msgSender: users.sender });

deposit(streamId, DEPOSIT_AMOUNT_6D);

vm.warp({ newTimestamp: flow.depletionTimeOf(defaultStreamId)});

resetPrank({ msgSender: users.admin });

flow.setProtocolFee(usdc, PROTOCOL_FEE);

fee = flow.protocolFee(usdc).unwrap();

assertEq(fee, PROTOCOL_FEE);

expectCallToTransfer({ token: usdc, to: users.recipient, amount: WITHDRAW_AMOUNT_6D -

PROTOCOL_FEE_AMOUNT_6D });↪→

flow.withdraw({ streamId: streamId, to: users.recipient, amount: WITHDRAW_AMOUNT_6D });

}

Recommendation: Consider storing the fee in effect as part of the stream parameters when created.
Sablier: We appreciate your input. While we agree with your valid points, this is a strategic businessdecision to facilitate monetization via all pending withdrawals including streamed tokens pre-activationof the protocol fee. Therefore, we have decided to keep the current version.
Cantina Managed: Acknowledged.
3.2.3 Sender can steal deposits from depositors/recipient via refund

Severity: Medium Risk
Context: SablierFlow.sol#L490-L492
Description: Anyone can create a flow and anyone can deposit in to the flow which is used in the case ofgrants wheremultiple contributors fund the project as a recipient. The sender is specified by the creatorof the stream and can be the creator, first depositor or any other actor.
A sender can also refund the balance of a stream that exceeds the debt accumulated. As such the fundsfrom other depositors can be stolen by the sender if they exceed the current totalDebt.
Proof of Concept: Add the following to refund.t.sol:

function test_SenderRefundsFromDepositors() external{

vm.stopPrank();

deal({ token: address(usdc), to: users.sender, give: 0}); //set sender balance to 0 for ease

uint128 senderInitialBalance = uint128(usdc.balanceOf(users.sender));

uint256 streamId = createDefaultStream(IERC20(address(usdc)));

vm.prank(users.eve); //as depositor

flow.deposit(streamId, DEPOSIT_AMOUNT_6D);

expectCallToTransfer({ token: usdc, to: users.sender, amount: DEPOSIT_AMOUNT_6D });

vm.prank(users.sender);

flow.refund({ streamId: streamId, amount: DEPOSIT_AMOUNT_6D });

uint128 senderBalance = uint128(usdc.balanceOf(users.sender));

assertEq(senderBalance, senderInitialBalance + DEPOSIT_AMOUNT_6D);

vm.warp({ newTimestamp: WARP_ONE_MONTH });

//Withdraw to recipient fails as the balance is 0

vm.expectRevert(abi.encodeWithSelector(Errors.SablierFlow_Overdraw.selector, streamId, WITHDRAW_AMOUNT_6D,

0));↪→

flow.withdraw({ streamId: streamId, to: users.recipient, amount: WITHDRAW_AMOUNT_6D });

}

Recommendation: Consider adding the functionality to make a flow non-refundable so depositors areconfident their contribution will not be taken by the sender.
Sablier:Weoperate under the assumption that users depositing into any stream trust the stream's owner.Given that Flow streams don't require upfront deposits, there is also an assumption that trust has beenestablished between stream sender, depositors and the recipient. Therefore, depositors are not expectedto fund arbitrary streams. Nonetheless, we appreciate your suggestion and may consider offering non-refundable streams in future versions.
Cantina Managed: Acknowledged.

6

https://cantina.xyz/code/99ae802b-f05c-4e36-a1d1-240d5146649c/src/SablierFlow.sol#L490-L492

3.3 Low Risk
3.3.1 depletionTimeOf() can return incorrect time due to unchecked overflow

Severity: Low Risk
Context: SablierFlow.sol#L86-L95
Description: depletionTimeOf() calculates the time that a stream will run out of funds by converting theexcess balance into 18 decimals, and then dividing by the rate per second to find the number of remainingseconds. This is performed in an unchecked block.
The first step (converting the excess funds into 18 decimals) can involve multiplying the excess balanceby a number as high as 10 ** 18. In an extreme case (approx 3.4e20 excess tokens with default RATE_-PER_SECOND), this value can be high enough to silently overflow.
This results in a very small 18 decimal balance, which results in an even smaller number of remainingseconds after division.
Proof of Concept: The following test can be added to depletionTimeOf.t.sol to demonstrate the issue:
function test_depletionTimeOfOverflow() public {

vm.stopPrank();

IERC20 token = createToken(0);

uint256 streamId = createDefaultStream(RATE_PER_SECOND, token);

uint overflowAmt = 340282366920938463464;

deal(address(token), address(this), overflowAmt);

token.approve(address(flow), overflowAmt);

flow.deposit(streamId, uint128(overflowAmt));

assert(flow.depletionTimeOf(streamId) < block.timestamp + 1 hours);

}

Recommendation: solvencyAmount should be a uint256.
Sablier: We have addressed this issue in PR 296.
Cantina Managed: Confirmed.
3.3.2 depletionTimeOf() can fail due to overflowing uint40 result

Severity: Low Risk
Context: SablierFlow.sol#L94
Description: depletionTimeOf() returns a uint40. This is common because it measures time, and allreasonable times fit comfortably within that value.
However, depletionTimeOf() is calculated by taking the excess balance of an asset, dividing it by the rateper second, and adding this number of seconds to the previous snapshot time. For a very slow stream,there is nothing to prevent a large amount of assets being deposited that would last an amount of timethat exceeds the max uint40.
In these cases, the depletionTimeOf() would revert.
Proof of Concept: The following test can be added to depletionTimeOf.t.sol, which demonstrates theeffect of depositing just 1 USDC against an extremely slow stream, which causes the function to overflow:

7

https://cantina.xyz/code/99ae802b-f05c-4e36-a1d1-240d5146649c/src/SablierFlow.sol#L86-L95
https://github.com/sablier-labs/flow/pull/296
https://cantina.xyz/code/99ae802b-f05c-4e36-a1d1-240d5146649c/src/SablierFlow.sol#L94

function testZach_depletionTimeOfRevert() public {

vm.stopPrank();

uint256 streamId = createDefaultStream(UD21x18.wrap(1), usdc);

uint oneDollar = 1e6;

deal(address(usdc), address(this), oneDollar);

usdc.approve(address(flow), oneDollar);

flow.deposit(streamId, uint128(oneDollar));

vm.expectRevert();

flow.depletionTimeOf(streamId);

}

Recommendation: depletionTimeOf() should return a uint256, since the value isn't used internally andtherefore doesn't need to match with the type for snapshotTime.
Sablier: We have addressed this issue in PR 296.
Cantina Managed: Confirmed.
3.3.3 Reorg attack can steal deposits made shortly after flow creation

Severity: Low Risk
Context: SablierFlow.sol#L240-L243
Description: The deposit() function only requires the streamId to deposit funds into the flow. It doesnot provide any safety check on the other parameters of the flow like sender, recipient or token. If anattacker manages a reorg attack they can create their own flow with the initial streamIdof the victim. Anydeposits made based on the initial streamId are then directed to the attackers flow.
Note that this also means that if the victim has set an approval for another token with a higher value theattacker can choose that one for their flow and the amount of those tokens will be transferred rather thanthe original intended ones. This can for instance happen if the depositor already has created other flowswith different tokens.
Recommendation: Consider letting the depositor specify the important flow parameters (e.g. sender,
recipient token and transferable) either in full or as a bundled hash and perform a check.
Sablier: We've decided to address this finding as it could compromise the protocol's security. This issueis resolved in PR 313.
You can see that deposit now requires both sender and recipient to be specified. So if there is a re-org, an attacker cannot steal funds from deposit by becoming the stream's beneficiaries. Although yousuggested including the token as well, we believe doing so would negatively impact user experience. Withthe new changes, the only risk that remains is that an attacker could potentially change the token addressor other stream parameters such as rps, but these would still involve the correct sender and recipient.Thus, there is no incentive for the attacker unless he is the recipient, which we consider highly improbablein practice.
Cantina Managed: Confirmed.
3.3.4 depletionTimeOf() returns 0 when still solvent at edge of depletion time

Severity: Low Risk
Context: SablierFlow.sol#L75
Description: The Natspec of the depletionTimeOf() states that it returns 0when there is uncovered debt.
/// @notice Returns the time at which the stream will deplete its balance and start to accumulate uncovered

debt. If↪→

/// there already is uncovered debt, it returns zero.

The solvencyPeriod is also calculated based on when the debt exceeds the balance by 1.

8

https://github.com/sablier-labs/flow/pull/296
https://cantina.xyz/code/99ae802b-f05c-4e36-a1d1-240d5146649c/src/SablierFlow.sol#L240-L243
https://github.com/sablier-labs/flow/pull/313
https://cantina.xyz/code/99ae802b-f05c-4e36-a1d1-240d5146649c/src/SablierFlow.sol#L75

if (tokenDecimals == 18) {

solvencyAmount = (balance - snapshotDebt + 1);

} else {

uint128 scaleFactor = (10 ** (18 - tokenDecimals)).toUint128();

solvencyAmount = (balance - snapshotDebt + 1) * scaleFactor;

}

uint256 solvencyPeriod = solvencyAmount / _streams[streamId].ratePerSecond.unwrap();

Therfore depletionTimeOf() should not return 0 when the totalDebt == balance, but rather the times-tamp at which 1 more token will be streamed.
Recommendation: Change the depleteiontimeOf()as follows:
- if (snapshotDebt + _ongoingDebtOf(streamId) >= balance) {

+ if (snapshotDebt + _ongoingDebtOf(streamId) > balance) {

Sablier: There was indeed the case where the NatSpec and the actual implementation were not in sync.The fix for this issue was included in PR 296.
Cantina Managed: Confirmed.
3.3.5 Rounding of snapshotDebt will cause all streams to be slightly underpaid

Severity: Low Risk
Context: SablierFlow.sol#L483-L485, DataTypes.sol#L74-L75
Description: Currently, the protocol uses 18 decimals when storing the ratePerSecond to increase preci-sion when the underlying token has fewer than 18 decimals. This improves the precision of calculationbetween 2 withdrawals (or any function that alters the snapshotDebt).
Whenever withdraw() is called, the calculation happens with the increased precision, but then when stor-ing the remaining snapshotDebt, we cast back to the token's decimals. The result is that we are increasingthe snapshotTime to the present, but increasing the debt slightly less than we should be.
Since there is no "final amount" to be streamed, this lowering of the debt is permanently lost to the
recipient in favor of the sender.
Howbig is this loss? Inmost cases, it's extremely small. It depends on the exact rounding of the calculation,but will be approximately evenly distributed between 0 and 1 unit of the token (in its own decimals).

• In the case of WETH ($2000, 18 decimals), the max rounding represents 2e-15.
• In the case of USDC ($1, 6 decimals), the max rounding represents 1e-6.
• In the case of WBTC ($60000, 8 decimals), the max rounding represents 6e-4.
• In the case of GUSD ($1, 2 decimals), the max rounding represents 1e-2.

Each of these values is very small, with the most extreme (GUSD) losing only $0.01 per call to withdraw().
However, with higher value, lower decimal tokens, there is no bound on how extreme this rounding couldbe. Especially given that withdraw() is permissionless, a token with more substantial rounding couldprovide an incentive for an attacker to call withdraw() repeatedly to reduce the recipient's funds.
Recommendation: Store the snapshotDebt as a uint256 in the same full 18 decimal precision as the
ratePerSecond.
This will ensure that all funds that should go to the recipient are allocated to the recipient.
Then, it is much simpler to ensure that when the recipient claims the funds, the conversion is performed,and their snapshotDebt only decreases by an amount that represents the actual funds they claimed.
Sablier:Wehave implemented the fix to store snapshotDebt as a 18-decimal fixed-point number in PR 312.This value is only descaled during withdrawal, thereby improving the system's precision (the snapshotdebt as uint256 was already implemented in PR 296).

9

https://github.com/sablier-labs/flow/pull/296
https://cantina.xyz/code/99ae802b-f05c-4e36-a1d1-240d5146649c/src/SablierFlow.sol#L483-L485
https://cantina.xyz/code/99ae802b-f05c-4e36-a1d1-240d5146649c/src/types/DataTypes.sol#L74-L75
https://github.com/sablier-labs/flow/pull/312
https://github.com/sablier-labs/flow/pull/296

3.3.6 depletionTimeOf() should not be trusted by on chain integrators

Severity: Low Risk
Context: (No context files were provided by the reviewer)
Description: depletionTimeOf() is a view function that returns the amount of time left before a streamruns out of funds.
Because the sender has complete control over the stream, within a single block they are able to sandwichany call to depletionTimeOf() to:

• Make this time far in the future, but temporarily lowering RPS.
• Make this time immediate, by temporarily raising RPS.
• Make this call revert, by pausing the stream.

Recommendation: It should explicitly bemade clear to integrating protocols that they should not rely onthis function, and its only purpose is to support off chain frontends without any risk to beingmanipulated.
Sablier: We acknowledge this issue, and we will make it very clear in our docs that this function cannotbe fully trusted for on-chain integration. However, it is a useful function for frontend integrations, and werecommend its use in those cases.
Cantina Managed: Acknowledged.
3.3.7 setProtocolFee() does not emit BatchMetadataUpdate to indicate metadata update

Severity: Low Risk
Context: SablierFlowBase.sol#L262
Description: The current version of the FlowNFTDescriptor contract responsible for the metadata JSONdoes not include the protocol fee as part of the metadata. However a future version of the NFTDescriptorcan include the protocol fee and therefore a change of the fee should emit a BatchMetadataUpdate eventso third parties can update the metadata accordingly. EIP-4906 also specifies that it MUST be emitted inthis case:

The MetadataUpdate or BatchMetadataUpdate event MUST be emitted when the JSON meta-data of a token, or a consecutive range of tokens, is changed.
Recommendation: Consider adding the following to setProtocolFee()

+ emit BatchMetadataUpdate({ _fromTokenId: 1, _toTokenId: nextStreamId - 1 });

Sablier: We have not used BatchMetadataUpdate because the current descriptor only returns a simplelogo, but as you mentioned, updating it in the future could cause issues. It has been addressed in PR 306.
Cantina Managed: Confirmed.

10

https://cantina.xyz/code/99ae802b-f05c-4e36-a1d1-240d5146649c/src/abstracts/SablierFlowBase.sol#L262
https://eips.ethereum.org/EIPS/eip-4906
https://github.com/sablier-labs/flow/pull/306

3.4 Informational
3.4.1 withdrawMax()does not return the actual received amount

Severity: Informational
Context: SablierFlow.sol#L410-L413
Description: withdrawMax() is provided as a convenience function to be called without having to knowthe withdrawableAmount and the protocolFee that will be applied if any.
Any integrating contract will most likely need to know the exact amount transferred to the specified toaddress. Therefore to determine the amount (not including the fees) would require before and afterbalance checks.
Recommendation: Consider returning the amount not including the fees sent to the to address for with-
drawMax and possibly also for withdraw as it too does not give any indication of the fee applied.
Sablier: This issue has been fixed in PR 304. We decided to return both the net amount withdrawn andthe protocol fee in the withdrawMax and withdraw functions.
Cantina Managed: Confirmed.

11

https://cantina.xyz/code/99ae802b-f05c-4e36-a1d1-240d5146649c/src/SablierFlow.sol#L410-L413
https://github.com/sablier-labs/flow/pull/304

	Introduction
	About Cantina
	Disclaimer
	Risk assessment
	Severity Classification

	Security Review Summary
	Findings
	High Risk
	Sender can brick stream by forcing overflow in debt calculation

	Medium Risk
	isTransferable() will succeed and return false for non-existent streams
	New protocol fee applies retroactively on debt before fee change
	Sender can steal deposits from depositors/recipient via refund

	Low Risk
	depletionTimeOf() can return incorrect time due to unchecked overflow
	depletionTimeOf() can fail due to overflowing uint40 result
	Reorg attack can steal deposits made shortly after flow creation
	depletionTimeOf() returns 0 when still solvent at edge of depletion time
	Rounding of snapshotDebt will cause all streams to be slightly underpaid
	depletionTimeOf() should not be trusted by on chain integrators
	setProtocolFee() does not emit BatchMetadataUpdate to indicate metadata update

	Informational
	withdrawMax()does not return the actual received amount

