Marginal DAO

Security Review

Review by:
Kaden, Security Researcher

April 25, 2024

Contents

1 Introduction 2
1.1 Disclaimer . . . e 2
1.2 Riskassessment. e e 2

1.2.1 Severity Classification e e 2

2 Security Review Summary 3

3 Findings 4
3.1 MediumRisk . . o o o e e e 4

3.1.1 Loss of precision possible due to rewardRate rounding 4
3.1.2 Insufficient validation of amount provided to notifyRewardAmount 4
3.1.3 DoSwithblockgaslimit e 5
3.2 LOWRISK . o o e 5
3.2.1 Consider using a two-step ownership transfer pattern 5
3.3 GasOptimization L e e e e e 6
3.3.1 Redundantrequirestatement 6
3.3.2 Redundanton-chaindata e 6
3.3.3 Useuint256 event params in place of smaller variations. 6
3.3.4 Mark state variables as immutable and constant whererelevant 8
3.3.5 Cache storage variable used morethanonce 8
3.3.6 Circumstantially redundant Reward struct members 8
3.4 Informational e 9
3.4.1 FRailingtest cases o v i i e e 9
3.4.2 Zeroamountsacceptedinlockandfreeo i i 10
3.4.3 Use UPPER_CASE naming convention forconstants 11
3.4.4 Missing NatSpeccomments e e 11
3.4.5 Outdated compilerversion e e 11
3.4.6 Include rewardsToken as RewardAdded event parameter 12

1 Introduction

1.1 Disclaimer

A security review a detailed evaluation of the security posture of the code at a particular moment based
on the information available at the time of the review. While the review endeavors to identify and disclose
all potential security issues, it cannot guarantee that every vulnerability will be detected or that the code
will be entirely secure against all possible attacks. The assessment is conducted based on the specific
commit and version of the code provided. Any subsequent modifications to the code may introduce new
vulnerabilities that were absent during the initial review. Therefore, any changes made to the code require
a new security review to ensure that the code remains secure. Please be advised that a security review is
not a replacement for continuous security measures such as penetration testing, vulnerability scanning,
and regular code reviews.

1.2 Risk assessment

Severity Description
Critical Must fix as soon as possible (if already deployed).
High Leads to a loss of a significant portion (>10%) of assets in the protocol, or sig-

nificant harm to a majority of users.

Medium Global losses <10% or losses to only a subset of users, but still unacceptable.

Low Losses will be annoying but bearable. Applies to things like griefing attacks that
can be easily repaired or even gas inefficiencies.

Gas Optimization Suggestions around gas saving practices.

Informational Suggestions around best practices or readability.

1.2.1 Severity Classification

The severity of security issues found during the security review is categorized based on the above table.
Critical findings have a high likelihood of being exploited and must be addressed immediately. High find-
ings are almost certain to occur, easy to perform, or not easy but highly incentivized thus must be fixed
as soon as possible.

Medium findings are conditionally possible or incentivized but are still relatively likely to occur and should
be addressed. Low findings a rare combination of circumstances to exploit, or offer little to no incentive
to exploit but are recommended to be addressed.

Lastly, some findings might represent objective improvements that should be addressed but do not im-
pact the project's overall security (Gas and Informational findings).

2 Security Review Summary

Marginal is a permissionless spot and perpetual exchange that enables leverage on assets with an
Uniswap V3 Oracle.

The specific contracts in scope for this review were:

Contract Additional comments
MarginalToken.sol Forked from Uni.sol
MultiRewards.sol Forked from Curve.fi multi rewards

MultiRewardsFactory.sol Forked from Uniswap staking rewards factory but adapted to Curve.fi multi rewards
StakingPoints.sol

From Apr 22nd to Apr 24th the security researchers conducted a review of dao on commit hash
5b67cea5. The team identified a total of 16 issues in the following risk categories:

+ Critical Risk: 0

* High Risk: 0

* Medium Risk: 3

+ Low Risk: 1

* Gas Optimizations: 6

* Informational: 6

https://github.com/MarginalProtocol/dao
https://github.com/MarginalProtocol/dao/tree/5b67cea5c2f95c8586332dc870df43ed6ca51ded/

3 Findings

3.1 Medium Risk
3.1.1 Loss of precision possible due to rewardRate rounding

Severity: Medium Risk
Context: MultiRewards.sol#L164-L166, MultiRewards.sol#L168-L176

Description: In MultiRewards.notifyRewardAmount, we compute the rewardRate given the amount of
reward tokens to distribute divided by the rewardsDuration, e.g.:

rewardData[_rewardsToken] .rewardRate = reward.div(
rewardData[_rewardsToken] .rewardsDuration

)

Since we're using integer math, when we divide, we round the result down to the nearest integer. In most
circumstances, this is not a concern and results in only dust amounts of rewards to be left in the contract
after they've been distributed. However, in some edge cases this can result in a much more significant
loss.

For example, consider a circumstance where we use a low decimal _rewardsToken, e.g. GUSD (2 decimals),
and a high rewardsDuration, e.g. 4 years (126,227,808 seconds). Any reward amount less than 1,262,278
GUSD would result in the rewardRate being rounded down to 0, permanently locking all the transferred
GUSD.

We can also round down to non-zero amounts in less extreme circumstances which still result in some
amount of tokens never being claimable. For example, with the same preconditions as above, a reward
amount of 2,524,555 GUSD would give us: 252455500 / 126227808 = 1.999999081 which rounds down to
a rewardRate Of 1, resulting in about 50% of the GUSD being lost.

Recommendation: It's important that the amount of reward tokens to distribute is many multiples
greater than the rewardsDuration. As such, it's recommended to include validation both that the re-
wardsDuration is not too high and that the _rewardsToken decimals are not too low.

A good option may be toimplementa minimum reward / rewardsDuration multiple which would indicate
the maximum possible relative precision loss, where if the minimum multiple is 1e6 then the maximum
possible relative loss is <1/1e6. This should be enforced both in MultiRewards and MultiRewardsFactory,
and in the MultiRewardsFactory it's important that the validation is implemented in addReward or else it
may be possible to add rewards which can never be removed.

3.1.2 Insufficient validation of amount provided to notifyRewardAmount

Severity: Medium Risk
Context: MultiRewards.sol#L184-L189

Description: In MultiRewards.notifyRewardAmount, we validate that the _rewardsToken balance of the
contract is sufficient to cover future reward emissions:

uint256 balance = IERC20(_rewardsToken).balance(Of (address(this));
require(
revardData[_rewardsToken] .rewardRate <=
balance.div(rewardData[_rewardsToken] .rewardsDuration),
"Provided reward too high"

)

While this does effectively validate that we have enough _rewardsToken balance to cover the future emis-
sions, it fails to account for past emissions which have not yet been claimed. Since users must claim their
emitted rewards by manually calling getReward, a significant portion of the _rewardsToken balance may
be these unclaimed rewards. As a result, the above logic does not sufficiently validate that the contract
balance will be sufficient to cover all reward emissions. This allows the invariant that there is sufficient
_rewardsToken balance in the contract to cover all emissions to be broken, resulting in some users not
receiving any rewards.

https://github.com/MarginalProtocol/dao/blob/5b67cea5c2f95c8586332dc870df43ed6ca51ded/contracts/rewards/MultiRewards.sol#L164-L166
https://github.com/MarginalProtocol/dao/blob/5b67cea5c2f95c8586332dc870df43ed6ca51ded/contracts/rewards/MultiRewards.sol#L168-L176
https://github.com/MarginalProtocol/dao/blob/5b67cea5c2f95c8586332dc870df43ed6ca51ded/contracts/rewards/MultiRewards.sol#L184-L189

It's worth noting that under the expectation of only using this contract with MultiRewardsFactory, this
check is somewhat redundant due to the fact that the amount transferred along with the notifyRewar-
dAmount call is equal to the reward amount parameter:

IERC20(rewardsToken) .safeTransfer(multiRewards, rewardAmount);
IMultiRewards (multiRewards) .notifyRewardAmount (

rewardsToken,

rewardAmount

b

Recommendation: Rather than using the safeTransfer in MultiRewardsFactory.notifyRewardAmount,
it's recommended that we instead use a safeTransferFrom of the reward amount in MultiRe-
wards .notifyRewardAmount such that no matter how MultiRewards is used, we ensure that we transfer a
sufficient amount to cover all reward emissions.

3.1.3 DoS with block gas limit

Severity: Medium Risk
Context: MultiRewards.sol#L201-L210

Description: MultiRewards.updateReward is responsible for reward accounting logic and is executed at
the start of critical functions: stake, withdraw, getReward, and notifyRewardAmount. The modifier loops
over every reward token, checkpointing reward emissions.

The problem with this logic is that rewardTokens is an array that can grow in size to an undefined capacity
without the ability to reduce the size of the array. As a result, the gas costs required to execute this
logic can also grow to an undefined capacity. If the gas costs ever exceed the block gas limit, the critical
functions executing this logic will be permanently blocked. Since this modifier is used on every function
responsible for removing staking and reward tokens from the contract, this would result in all staking and
reward tokens being permanently locked in the contract.

Recommendation: Add and enforce a maximum length for the rewardTokens array, e.g. in MultiRe-
wards.addReward:

// Revert if we've already reached the maz length
if (rewardTokens.length == MAX_REWARD_LENGTH) revert EXCEEDS_MAX_REWARD_LENGTH();

3.2 Low Risk

3.2.1 Consider using a two-step ownership transfer pattern
Severity: Low Risk

Context: MarginalToken.sol#L56-L60

Description: In MarginalToken, we have a setOwner method, which immediately applies the given _owner
address as the new owner.

function setOwner(address _owner) external {

require(msg.sender == owner);
emit OwnerChanged(owner, _owner);
owner = _owner;

If the wrong _owner address is provided, ownership will be burned, causing the mint function to be per-
manently inaccessible.

Similarly, we inherit the Ownable contract in both the MultiRewards and MultiRewardsFactory contracts,
which uses a similar mechanism which may also result in ownership being accidentally burned.

Recommendation: Consider using a two-step ownership transfer pattern.

https://github.com/MarginalProtocol/dao/blob/5b67cea5c2f95c8586332dc870df43ed6ca51ded/contracts/rewards/MultiRewards.sol#L201-L210
https://github.com/MarginalProtocol/dao/blob/5b67cea5c2f95c8586332dc870df43ed6ca51ded/contracts/MarginalToken.sol#L56-L60
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable2Step.sol

3.3 Gas Optimization

3.3.1 Redundant require statement
Severity: Gas Optimization

Context: StakingPoints.sol#L64

Description: In StakingPoints.free, we include the following require statement prior to decrementing
the stake.balance:

require(amount <= uint256(stake.balance), "amount > stake balance");
stake.balance -= uint224(amount);

This require statement is redundant due to the fact that if amount > uint256(stake.balance), we will
revert regardless on the following line due to an underflow.

Recommendation: Remove the require statement unless the revert message is more desirable than the
gas savings.

3.3.2 Redundant on-chain data
Severity: Gas Optimization
Context: StakingPoints.sol#L20-L27

Description: StakingPoints.stakes is @a mapping which keeps track of user balances and the block times-
tamp of their last update:

struct Stake {
// balance at last update to stake
uint224 balance;
// timestamp of last update to stake
uint32 blockTimestamp;

}
/// @inheritdoc IStakingPoints
mapping(address => Stake) public stakes;

The blockTimestamp does not appear to be referenced on-chain at any point, rather it seems that refer-
encing the block.timestamp is only necessary in event emissions in lock and free. Assuming this is the
case, we can simply map user addresses directly to their balances to save gas.

Recommendation: Map user addresses directly to their staked balance:

- struct Stake {

- // balance at last update to stake

- uint224 balance;

- // timestamp of last update to stake

- uint32 blockTimestamp;

-7

- /// @inheritdoc IStakingPoints

- mapping(address => Stake) public stakes;

+ mapping(address => uint256) public stakes;

Note that this also requires modifying current usage of the stakes mapping to accompany this change.

3.3.3 Useuint256 event params in place of smaller variations
Severity: Gas Optimization
Context: StakingPoints.sol#L29-138

Description: The events Lock and Free in StakingPoints use uint32 and uint224 parameters:

https://github.com/MarginalProtocol/dao/blob/5b67cea5c2f95c8586332dc870df43ed6ca51ded/contracts/rewards/StakingPoints.sol#L64
https://github.com/MarginalProtocol/dao/blob/5b67cea5c2f95c8586332dc870df43ed6ca51ded/contracts/rewards/StakingPoints.sol#L20-L27
https://github.com/MarginalProtocol/dao/blob/5b67cea5c2f95c8586332dc870df43ed6ca51ded/contracts/rewards/StakingPoints.sol#L29-L38

event Lock(
address indexed sender,
uint32 blockTimestampAfter,
uint224 balanceAfter

);

event Free(
address indexed sender,
uint32 blockTimestampAfter,
uint224 balanceAfter

);

To emit these events, we must first cast downcast the parameters from uint256 values. Additionally, the
compiler only works with 256 bit values so it upcasts them regardless.

We can test with the following contract that we save gas by using uint256 values for the event parameters:
pragma solidity 0.8.17;

contract UintEvents {
event Lock(
address indexed sender,
uint32 blockTimestampAfter,
uint224 balanceAfter
);

event LockCheap(
address indexed sender,
uint256 blockTimestampAfter,
uint256 balanceAfter

)s

function lock(uint256 amount) external {
emit Lock(msg.sender, uint32(block.timestamp), uint224(amount));
¥

function lockCheap(uint256 amount) external {
emit LockCheap(msg.sender, block.timestamp, amount);

}

The result of calling 1lock v.s. lockCheap is an additional 39 gas.
Recommendation: Use uint256 event parameters:

event Lock(
address indexed sender,
- uint32 blockTimestampAfter,
+ uint256 blockTimestampAfter,
uint224 balanceAfter
uint256 balanceAfter
);
event Free(
address indexed sender,
- uint32 blockTimestampAfter,
+ uint256 blockTimestampAfter,
uint224 balanceAfter
+ uint256 balanceAfter
);

+

3.3.4 Mark state variables as immutable and constant where relevant
Severity: Gas Optimization
Context: MultiRewardsFactory.sol#L17-L18

Description: stakingRewardsGenesis is a state variable which is assigned in the constructor and cannot
possibly be changed, thus it can be marked as immutable. Immutable variables are not stored in contract
storage, thus do not require expensive SLOAD's (2100 gas) for retrieval, instead they are stored at the end
of the compiled contract bytecode where it is much cheaper to retrieve.

Similarly, rewardsDuration is initialized when defined and also can never be changed, thus it can be
marked as constant. Constant variables are also not stored in contract storage and instead are placed
directly in the bytecode where they are used.

Recommendation: Mark stakingRewardsGenesis and rewardsDuration as immutable and constant, re-
spectively:

- uint2b6 public stakingRewardsGenesis;

+ uint2566 public immutable stakingRewardsGenesis;

- uint2566 public rewardsDuration = 30 days;

+ uint2566 public constant REWARDS_DURATION = 30 days;

Note also that constants should use UPPER_CASE naming convention as can be seen in the above snippet.

3.3.5 Cache storage variable used more than once
Severity: Gas Optimization
Context: MultiRewards.sol#L79-L89

Description: MultiRewards.rewardPerToken references the _totalSupply state variable twice, requiring
two SLOAD's. Instead, it would be more efficient to cache the value locally and reuse the cached variable.

Recommendation: Cache _totalSupply and use the cached variable, e.g.:

+ uint256 totalSupply = _totalSupply;
- if (_totalSupply == 0) {
+ if (totalSupply == 0) {
return rewardData[_rewardsToken] .rewardPerTokenStored;
¥
return
rewardData[_rewardsToken] .rewardPerTokenStored.add(
lastTimeRewardApplicable(_rewardsToken)
.sub(rewardData[_rewardsToken] .lastUpdateTime)
.mul(rewardData[_rewardsToken] .rewardRate)
.mul(1lel8)
.div(_totalSupply)
+ .div(totalSupply)
);

3.3.6 Circumstantially redundant Reward struct members
Severity: Gas Optimization
Context: MultiRewards.sol#L48-L57

Description: In MultiRewards.addReward, we accept _rewardsDistributor and _rewardsDuration param-
eters which are added to the rewardData for the included _rewardsToken:

function addReward(
address _rewardsToken,
address _rewardsDistributor,
uint256 _rewardsDuration
) public onlyOwner {
require(rewardData[_rewardsToken] .rewardsDuration == 0);
rewvardTokens .push(_rewardsToken);
rewardData[_rewardsToken] .rewardsDistributor = _rewardsDistributor;
revardData[_rewardsToken] .rewardsDuration = _rewardsDuration;

https://github.com/MarginalProtocol/dao/blob/5b67cea5c2f95c8586332dc870df43ed6ca51ded/contracts/rewards/MultiRewardsFactory.sol#L17-L18
https://github.com/MarginalProtocol/dao/blob/5b67cea5c2f95c8586332dc870df43ed6ca51ded/contracts/rewards/MultiRewards.sol#L79-L89
https://github.com/MarginalProtocol/dao/blob/5b67cea5c2f95c8586332dc870df43ed6ca51ded/contracts/rewards/MultiRewards.sol#L48-L57

However, when MultiRewards is used with MultiRewardsFactory, the provided _rewardsDistributor and
_rewardsDuration values are always the same:

IMultiRewards (multiRewards) .addReward(
rewardsToken,
// @audit always uses address(this) for _rewardsDistributor
address(this),
// @audit this is a constant value
rewardsDuration

b

Because of this, if the expectation is to only use MultiRewards in tandem with MultiRewardsFactory, we
can remove these members from the Reward struct and reference known constant values. For example,
instead of validating that MultiRewards.notifyRewardAmount is only called by the rewardsDistributor, we
can add the only0Owner modifier to the function. Similarly, instead of referencing the rewardsDuration per
token, we can reference a global value which applies to all of them.

Recommendation: Consider removing rewardsDistributor and/or rewardsDuration members from the
Reward struct, carefully replacing their logic as explained above. Additionally, if this change is made, pro-
vide documentation to clarify that the MultiRewards contract is only expected to work in tandem with the
MultiRewardsFactory contract.

3.4 Informational
3.4.1 Failing test cases

Severity: Informational
Context: ./tests/

Description: Upon running the test suite with ape test -s -m "not fuzzing", several tests are failing
due to AssertionErrors. It appears that the problem is simply that the revert messages are not as ex-
pected and not anything more significant, however, it's important to have a passing test suite regardless
for improved maintainability.

Output log:

https://github.com/MarginalProtocol/dao/tree/5b67cea5c2f95c8586332dc870df43ed6ca51ded/tests

short test summary info

N
FAILED tests/mrgl/test_mrgl_mint.py::test_mrgl_mint__reverts_when_not_minter_role - AssertionError: Expected

— revert message 'not minter' but got 'revert: not minter'.

FAILED tests/mrgl/test_mrgl_mint.py::test_mrgl_mint__reverts_when_not_allowed_yet - AssertionError: Expected

— revert message 'minting not allowed yet' but got 'revert: minting not allowed yet'.

FAILED tests/mrgl/test_mrgl _mint.py::test_mrgl mint__reverts_when_to_zero_address - AssertionError: Expected

— revert message 'minting to zero address' but got 'revert: minting to zero address'.

FAILED tests/mrgl/test_mrgl _mint.py::test_mrgl mint__reverts_when_exceed_mint_cap - AssertionError: Expected

— revert message 'exceeded mint cap' but got 'revert: exceeded mint cap'.

FAILED tests/multirewards/factory/test_multirewards_factory_add_reward.py::test_multirewards_factory_add_rewarJ
— d__reverts_when_not_owner - AssertionError: Expected revert message 'Ownable: caller is not the owner' but

— got 'revert: Ownable: caller is not the owner'.

FAILED tests/multirewards/factory/test_multirewards_factory_add_reward.py::test_multirewards_factory_add_rewarJ
— d__reverts_when_not_deployed - AssertionError: Expected revert message 'MultiRewardsFactory::addReward:

— not deployed' but got 'revert: MultiRewardsFactory::addReward: not deployed'.

FAILED tests/multirewards/factory/test_multirewards_factory_add_reward.py::test_multirewards_factory_add_rewarJ
— d__reverts_when_already_added - AssertionError: Expected revert message 'MultiRewardsFactory::addReward:

— already added' but got 'revert: MultiRewardsFactory::addReward: already added'.

FAILED tests/multirewards/factory/test_multirewards_factory_constructor.py::test_multirewards_factory_construcJ
— tor__reverts_when_genesis_too_soon - AssertionError: Expected revert message

— 'MultiRewardsFactory::constructor: genesis too soon' but got 'revert: MultiRewardsFactory::constructor:

— genesis too soon'.

FAILED tests/multirewards/factory/test_multirewards_factory_deploy.py::test_multirewards_factory_deploy__reverJ
— ts_when_not_owner - AssertionError: Expected revert message 'Ownable: caller is not the owner' but got

— 'revert: Ownable: caller is not the owner'.

FAILED tests/multirewards/factory/test_multirewards_factory_deploy.py::test_multirewards_factory_deploy__reverJ
— ts_when_already_deployed - AssertionError: Expected revert message 'MultiRewardsFactory::deploy: already

— deployed' but got 'revert: MultiRewardsFactory::deploy: already deployed'.

FAILED tests/multirewards/factory/test_multirewards_factory_notify_reward_amount.py::test_multirewards_factoryJ
— _notify_reward_amount__reverts_when_not_ready - AssertionError: Expected revert message

— 'MultiRewardsFactory::notifyRewardAmount: not ready' but got 'revert:

< MultiRewardsFactory::notifyRewardAmount: not ready’.

FAILED tests/multirewards/factory/test_multirewards_factory_notify_reward_amount.py::test_multirewards_factoryJ
— _notify_reward_amount__reverts_when_not_deployed - AssertionError: Expected revert message

— 'MultiRewardsFactory::notifyRewardAmount: not deployed' but got 'revert:

— MultiRewardsFactory::notifyRewardAmount: not de...

FAILED tests/multirewards/rewards/test_multirewards_add_reward.py::test_multirewards_add_reward__reverts_when_J
— mnot_owner - AssertionError: Expected revert message 'Ownable: caller is not the owner' but got 'revert:

— Ownable: caller is not the owner'.

FAILED tests/points/test_points_free.py::test_points_free__reverts_when_greater_than_stake_balance -

— AssertionError: Expected revert message 'amount > stake balance' but got 'revert: amount > stake balance'.

FAILED tests/points/test_points_lock.py::test_points_lock__reverts_when_stake_balance_greater_than_uint224_max

— - AssertionError: Expected revert message 'SafeCast: value doesn't fit in 224 bits' but got 'revert:

— SafeCast: value doesn't fit in 224 bits'.

15 failed, 33 passed in 12.42s

Recommendation: Fix the failing tests.

3.4.2 Zero amounts accepted in lock and free

Severity: Informational
Context: StakingPoints.sol#L50, StakingPoints.sol#L62

Description: Both StakingPoints.lock and StakingPoints.free allow for a zero amount parameter to be
provided. This results in execution successfully completing without any on-chain state changing.

Considering how points are tracked off-chain by tracking events, this may cause the indexing logic to
behave unexpectedly.

Recommendation: Revert in both lock and free if the amount == 0.

10

https://github.com/MarginalProtocol/dao/blob/5b67cea5c2f95c8586332dc870df43ed6ca51ded/contracts/rewards/StakingPoints.sol#L50
https://github.com/MarginalProtocol/dao/blob/5b67cea5c2f95c8586332dc870df43ed6ca51ded/contracts/rewards/StakingPoints.sol#L62

3.4.3 Use UPPER_CASE naming convention for constants

Severity: Informational
Context: MarginalToken.sol#L10-L17
Description: In MarginalToken, we assign the following constants:

/// @notice Initial number of tokens in circulation
uint256 public constant initialSupply = 1_000_000_000e18; // ! billion

/// @notice Minimum time between mints
uint256 public constant minimumTimeBetweenMints = 1 days * 365;

/// @notice Cap on the percentage of totalSupply that can be minted at each mint
uint256 public constant mintCap = 2;

The standard casing convention for constants in Solidity is to use UPPER_CASE. This improves readability
by allowing developers to easily identify that a given variable is a constant.
Recommendation: Rename the constants with UPPER_CASE naming convention:
/// @notice Initial number of tokens in circulation
- uint266 public constant initialSupply = 1_000_000_000e18; // 1 billion
+ uint256 public constant INITIAL_SUPPLY = 1_000_000_000e18; // 1 billion
/// @notice Minimum time between mints
- uint256 public constant minimumTimeBetweenMints = 1 days * 365;
+ uint256 public constant MINIMUM_TIME_BETWEEN_MINTS = 1 days * 365;
/// @notice Cap on the percentage of totalSupply that can be minted at each mint

- uint256 public constant mintCap = 2;
+ uint256 public constant MINT_CAP = 2;

3.4.4 Missing NatSpec comments
Severity: Informational
Context: MultiRewards.sol, MultiRewardsFactory.sol

Description: The MultiRewards and MultiRewardsFactory contract both lack NatSpec comments. Adding
NatSpec comments can improve readability for developers and improve user experience on external ap-
plications such as Etherscan.

Recommendation: Implement NatSpec comments in the MultiRewards and MultiRewardsFactory con-
tracts.

3.4.5 Outdated compiler version

Severity: Informational
Context: MultiRewards.sol#L2, MultiRewardsFactory.sol#L2

Description: Both MultiRewards and MultiRewardsFactory use Solidity v0.5.17. In general it's recom-
mended to avoid using old compiler versions as bug fixes are added over time.

In evaluating known Solidity bugs, there did not appear to be any bugs which are concerning in the context
of these contracts.

Recommendation: Consider using a newer compiler version.

Note: This consideration should also take into account the potential risk of modifying forked code to
support the version change.

11

https://github.com/MarginalProtocol/dao/blob/5b67cea5c2f95c8586332dc870df43ed6ca51ded/contracts/MarginalToken.sol#L10-L17
https://github.com/MarginalProtocol/dao/blob/5b67cea5c2f95c8586332dc870df43ed6ca51ded/contracts/rewards/MultiRewards.sol
https://github.com/MarginalProtocol/dao/blob/5b67cea5c2f95c8586332dc870df43ed6ca51ded/contracts/rewards/MultiRewardsFactory.sol
https://docs.soliditylang.org/en/latest/natspec-format.html#natspec
https://github.com/MarginalProtocol/dao/blob/5b67cea5c2f95c8586332dc870df43ed6ca51ded/contracts/rewards/MultiRewards.sol#L2
https://github.com/MarginalProtocol/dao/blob/5b67cea5c2f95c8586332dc870df43ed6ca51ded/contracts/rewards/MultiRewardsFactory.sol#L2
https://docs.soliditylang.org/en/latest/bugs.html

3.4.6 Include rewardsToken as RewardAdded event parameter
Severity: Informational
Context: MultiRewards.sol#L195

Description: In MultiRewards.notifyRewardAmount, we emit the RewardAdded event at the end of execu-
tion to log the amount of reward tokens added:

emit RewardAdded(reward);
This doesn't take into account the fact that there may be multiple different reward tokens and the actual

one in use is not logged. This can make it much harder to index the total amount of rewards added for
individual tokens which may be desirable.

Recommendation: Include a rewardsToken param on the RewardAdded event and pass the _rewardsToken
when emitted in notifyRewardAmount, e.g.:

- event RewardAdded(uint256 reward);
+ event RewardAdded(uint256 reward, address indexed rewardsToken);

- emit RewardAdded(reward);
+ emit RewardAdded(reward, _rewardsToken);

12

https://github.com/MarginalProtocol/dao/blob/5b67cea5c2f95c8586332dc870df43ed6ca51ded/contracts/rewards/MultiRewards.sol#L195

	Introduction
	Disclaimer
	Risk assessment
	Severity Classification

	Security Review Summary
	Findings
	Medium Risk
	Loss of precision possible due to rewardRate rounding
	Insufficient validation of amount provided to notifyRewardAmount
	DoS with block gas limit

	Low Risk
	Consider using a two-step ownership transfer pattern

	Gas Optimization
	Redundant require statement
	Redundant on-chain data
	Use uint256 event params in place of smaller variations
	Mark state variables as immutable and constant where relevant
	Cache storage variable used more than once
	Circumstantially redundant Reward struct members

	Informational
	Failing test cases
	Zero amounts accepted in lock and free
	Use UPPER_CASE naming convention for constants
	Missing NatSpec comments
	Outdated compiler version
	Include rewardsToken as RewardAdded event parameter

