
Velodrome govNFT
Security Review

Cantina Managed review by:
D-Nice, Lead Security Researcher
Kaden, Security Researcher
Brian McMichael, Security Researcher

June 14, 2024

Contents
1 Introduction 21.1 About Cantina . 21.2 Disclaimer . 21.3 Risk assessment . 21.3.1 Severity Classification . 2
2 Security Review Summary 3

3 Findings 43.1 Medium Risk . 43.1.1 GovNFTFactory/GovNFTTImelockFactory.govNFTs() will fail if registry values grow. . . 43.1.2 Split finalization succeeds with non-existent split proposals 43.1.3 Current frontrun protection of GovNFTTimelock works only under limited conditions . 53.2 Low Risk . 63.2.1 parentLock that does a split before its cliff adversely alters its vesting schedule 63.2.2 parentLock with commitless finalizeSplit bug can be bricked under exceptionalcircumstance . 63.2.3 ArtProxy depends on unmaintained Base64 library . 73.2.4 Ambiguous Lock NFT valuation due to frontrun & arbitrage opportunities on claimand sweep . 73.2.5 Vault logic may not be sufficient to claim airdrops. 83.2.6 Delegation is not reset when transferring lock tokens 93.2.7 Split lock vesting schedules may change as a result of the delay between committingand finalizing . 93.3 Gas Optimization . 103.3.1 Additional if condition in claim for generally lower gas cost 103.3.2 Utilization of Clones for Vault and GovNFT deployments 103.3.3 Lock struct has an unused member . 113.3.4 Incrementors can be made unchecked . 113.4 Informational . 123.4.1 Sequence off-by-one between tokenId and ERC721Enumerable.tokenByIndex 123.4.2 Inconsistent OpenZeppelin contract version used . 123.4.3 Consider expanding invariant testing to handle expected errors. 133.4.4 Cannot create retroactive vesting . 133.4.5 startTime != endTime requirement may be too restrictive 133.4.6 Shadowed function name . 143.4.7 Large contract deployments require optimizations. 143.4.8 Missing LICENSE . 15

1

1 Introduction

1.1 About Cantina
Cantina is a security servicesmarketplace that connects top security researchers and solutionswith clients.Learn more at cantina.xyz
1.2 Disclaimer
CantinaManagedprovides a detailed evaluation of the security posture of the code at a particularmomentbased on the information available at the time of the review. While CantinaManaged endeavors to identifyand disclose all potential security issues, it cannot guarantee that every vulnerability will be detected orthat the code will be entirely secure against all possible attacks. The assessment is conducted based onthe specific commit and version of the code provided. Any subsequent modifications to the code mayintroduce new vulnerabilities that were absent during the initial review. Therefore, any changes madeto the code require a new security review to ensure that the code remains secure. Please be advisedthat the Cantina Managed security review is not a replacement for continuous security measures such aspenetration testing, vulnerability scanning, and regular code reviews.
1.3 Risk assessment

Severity Description

Critical Must fix as soon as possible (if already deployed).

High Leads to a loss of a significant portion (>10%) of assets in the protocol, or sig-nificant harm to a majority of users.

Medium Global losses <10% or losses to only a subset of users, but still unacceptable.

Low Losses will be annoying but bearable. Applies to things like griefing attacks thatcan be easily repaired or even gas inefficiencies.

Gas Optimization Suggestions around gas saving practices.

Informational Suggestions around best practices or readability.
1.3.1 Severity Classification

The severity of security issues found during the security review is categorized based on the above table.Critical findings have a high likelihood of being exploited and must be addressed immediately. High find-ings are almost certain to occur, easy to perform, or not easy but highly incentivized thus must be fixedas soon as possible.
Medium findings are conditionally possible or incentivized but are still relatively likely to occur and shouldbe addressed. Low findings a rare combination of circumstances to exploit, or offer little to no incentiveto exploit but are recommended to be addressed.
Lastly, some findings might represent objective improvements that should be addressed but do not im-pact the project’s overall security (Gas and Informational findings).

2

https://cantina.xyz

2 Security Review Summary

Velodrome Finance is a next-generation AMM that combines the best of Curve, Convex and Uniswap,designed to serve as Optimism's central liquidity hub. Velodrome NFTs vote on token emissions andreceive incentives and fees generated by the protocol.
From Apr 3rd to Apr 8th the Cantina team conducted a review of contracts on commit hash b6d27740.The team identified a total of 22 issues in the following risk categories:

• Critical Risk: 0
• High Risk: 0
• Medium Risk: 3
• Low Risk: 7
• Gas Optimizations: 4
• Informational: 8

3

https://github.com/GovNFT/contracts
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658

3 Findings

3.1 Medium Risk
3.1.1 GovNFTFactory/GovNFTTImelockFactory.govNFTs() will fail if registry values grow.

Severity: Medium Risk
Context: GovNFTFactory.sol#L74, GovNFTTimelockFactory.sol#L79
Description: The factory getter for deployed NFT's returns the array of deployed addresses. These con-tracts are expected to deploy many GovNFT's and this getter will begin to fail on gas limitations when re-turning an array of 100-200 values ormore. The registry values are internal so there is no other availableaccessor to iterate these values after that point. Without this available integrators will need to cataloguecreation events to access this information.
Recommendation: Add accessor functions to get individual addresses or a partial array ofthe registry values. Consider functions like function govNFTsByIndex(uint256 _index) and/or
function govNFTs(uint256 _startIndex, uint256 _endIndex) which will allow an integrator to call
govNFTsLength() and make a partial iteration over the set.
Velodrome: Applied the recommended fix:

• Add paginated gettter govNFTs(start, end).
• Add getter by index govNFTs(index).

See commit 1d142bff.
Cantina Managed: Fix confirmed as of commit 75d06900, which includes slightly more optimized code.
3.1.2 Split finalization succeeds with non-existent split proposals

Severity: Medium Risk
Context: GovNFTTimelock.sol#L70
Description: GovNFTTimelock.finalizeSplit includes a check to enforce that a timelock has passedsince a split has been committed before creating the split.
if (block.timestamp < splitProposal.timestamp + timelock) revert SplitTooSoon();

However, it's possible that there exists no splitProposal for _proposedSplits[_from], in which case
splitProposal.timestamp == 0. In this case, the check will succeed since block.timestamp will alwaysbe greater than 0 + timelock. As a result, the full function execution will succeed unexpectedly. We canvalidate this by adding the following test to FinalizeSplit.t.sol:
function test_finalizeNonExistentSplit() public {

vm.startPrank(address(recipient));

// We skip the timelock delay because the block.timestamp is 0 in this environment

// In a real environment we would already have a block.timestamp > timelockDelay

skip(timelockDelay);

vm.expectEmit(false, false, false, true, address(govNFTLock));

emit IERC4906.MetadataUpdate(from);

govNFTLock.finalizeSplit(from);

vm.stopPrank();

}

Aswe can see from running the test, execution succeeds, running all the relevant logic for splitting, withoutany splits actually being created. This costs the user significant amounts of gas to update _parentLockstorage and may lead to unexpected side effects.
Recommendation: Revert if splitProposal.timestamp is 0 in addition to reverting if the timelock has yetto pass, e.g.:
- if (block.timestamp < splitProposal.timestamp + timelock) revert SplitTooSoon();

+ if (block.timestamp < splitProposal.timestamp + timelock || splitProposal.timestamp == 0) revert

SplitTooSoon();↪→

4

https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/GovNFTFactory.sol#L74
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/GovNFTTimelockFactory.sol#L79
https://github.com/GovNFT/contracts/commit/1d142bff33dc7c82bf797bea4c91cc76d3333695
https://github.com/GovNFT/contracts/commit/75d069005e9fe7f0377457dfc826a248eb48b909
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/extensions/GovNFTTimelock.sol#L70

Additionally, consider reverting in GovNFT._split if _paramsList.length is 0.
Velodrome: The issue has been acknowledged and fixed. This was fixed by the timelock protection refac-toring (see commit 9fc40e72). There is no commit/finalize mechanism anymore and the _split functionenforces the necessary checks.
Cantina Managed: The issue has been fixed by removing the commit/finalize mechanism.
3.1.3 Current frontrun protection of GovNFTTimelock works only under limited conditions

Severity: Medium Risk
Context: GovNFTTimelock.sol#L35-L103
Description: The GovNFTTimelock contract variant is intended to provide an extended contract which hasa degree of frontrun protection of its value, to provide the ability to sell it safely on a marketplace andincrease utility of these contracts.
The frontrun protection currently implemented, only provides a guarantee of frontrun protection to buy-ers that inspect the Lock NFT put up for sale on a marketplace, and ensure that its corresponding ID, hashad no CommitSplit events emitted. If a split has been committed to by the owner of the Lock NFT priorto listing it for sale, and the timelock for it exceeded, the owner can still frontrun up to the entire lockedvalue.
Therefore, buyers are required to be vigilant with the current implementation and check for the state ofthe Lock, and discount any from the marketplace not meeting that criteria.
Proof of concept (pluggable into FinalizeSplit test):
function test_FrontrunViaPreCommit() public {

skip(WEEK + 2 days); // skip somewhere after cliff ends

IGovNFT.Lock memory lock = govNFT.locks(from);

IGovNFT.SplitParams] memory paramsList = new IGovNFT.SplitParams[;

paramsList[0] = IGovNFT.SplitParams({

beneficiary: address(recipient2),

amount: amount,

start: uint40(block.timestamp),

end: lock.end,

cliff: 0,

description: ""

});

vm.startPrank(address(recipient));

govNFTLock.commitSplit(from, paramsList);

skip(timelockDelay);

// recipient mock lists NFT on marketplace

TestOwner NFTMarket = new TestOwner();

TestOwner buyer = new TestOwner();

// NFT marketplaces receives sell order, and gets approval to give it to buyer

govNFTLock.approve(address(NFTMarket), from);

// buyer sees vault value, and adds txn to mempool to buy it

uint256 buyerExpectedVault = IERC20(testToken).balanceOf(lock.vault);

// recipient frontruns it via the pre-commited split

uint256 tokenId = govNFTLock.finalizeSplit(from)[0];

vm.stopPrank();

// buyers transaction confirms... they receive vault, but it's less due to split

vm.prank(address(NFTMarket));

govNFTLock.safeTransferFrom(address(recipient), address(buyer), from);

assertEq(buyerExpectedVault, IERC20(testToken).balanceOf(lock.vault), 'buyer did not receive expected

vault value at NFT market listing');↪→

assertLt(buyerExpectedVault - amount, IERC20(testToken).balanceOf(lock.vault), 'Vault should not be

splittable/drainable right when listed');//'NFT sale was still frontrun by committing to split before

listing');

↪→

↪→

}

Recommendation: Strengthen the frontrun guarantees by requiring a Lock NFT owner to commit to a"freezing" of functionality for a transfer prior to a transfer being able to complete. In this case, the func-
5

https://github.com/GovNFT/contracts/commit/9fc40e72faf4dc99a79a12787553c02e58eba078
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/extensions/GovNFTTimelock.sol#L35-L103

tionality frozen would be split or any other functionality available to owners/approved parties of the NFT.Once in this committed/frozen state, after a timelock period ends, for safety, transfers will be enabled forthat NFT, this would guarantee that no frontruns can occur, and not require vigilance on a buyer's part,as any NFT not in this state, would revert during the buying process.
There are a few options for implementing this. The likeliest best candidate would be overriding _updateand adding a check that the NFT is in a committed state for transfers, and the timelock of the GovNFTfor it has passed, or revert. And any functionality that should be frozen during the commit state, shouldrevert if attempted to be accessed. Care will need to be taken to account for non-transfer cases, such asburn andmint. One potential downside of this is that owners may list NFTs, not committed, that will keepfailing, but its committed state could be communicated via the ArtProxy as well. Another con is that alltransfers for these types of contracts would be delayed by the timelock, but the benefit is it guarantees aspecific value of the Lock on commit.
Velodrome: Applied the recommended fix. The GovNFTTimelock has been refactored to includefreeze/unfreeze functions and corresponding locking mechanisms. The functionality is better describedin the project's SPECIFICATION.md. See commit 9fc40e72. The freeze/unfreeze was added to the "fullsplit" in commit db9e856a.
Cantina Managed: Recommendation has been followed and fix confirmed.
3.2 Low Risk
3.2.1 parentLock that does a split before its cliff adversely alters its vesting schedule

Severity: Low Risk
Context: GovNFT.sol#L255-L259
Description: When a parentLock splits prior to passing its cliff, the splitting logic fails to account anyvirtually vested amounts that may not be claimable yet, but should still be accruing and claimable oncethe cliff is passed. This effectively alters the vesting schedule of the updated parentLock to one that willalways be worse in payout until convergence at the end date.
The following graph showcases this, with f1 denoting an initial vesting schedule, and f2 denoting how thevesting schedule looks after a pre-cliff split. f2 has an increased slope, but discards any accounting of theinitial cliff vestment, resulting in worse payouts throughout the lifetime.
Recommendation: Under this design, Lock owners should avoid splits until the cliff is met.
This design can be fixed by not altering the parentLock times within _split in the instance its cliff has notbeen met yet. This should be safe as in such instancestotalClaimed and unclaimedBeforeSplit shouldbe 0. It may be worthwhile to assert these invariants.
Velodrome: Applied the recommended fix. Only update timestamps when splitting after the cliff periodend, i.e. the if condition update from above. See commit 98bd5469.
Cantina Managed: Fix confirmed.
3.2.2 parentLock with commitless finalizeSplit bug can be bricked under exceptional circum-

stance

Severity: Low Risk
Context:GovNFT.sol#L257, GovNFT.sol#L82, GovNFT.sol#L313-L332
Description: By abusing the finalizeSplit bug from "Split finalization succeeds with non-existent splitproposals" which skips validity checks, if a parentLock split happens to occur on the exact second of itsend timestamp, its Lock struct will have the same start and end value. This will result in core functionalityassociated with that NFT bricking, such as claim and split due to _totalVested throwing from a divideby zero error. Effectively causing any unclaimed amounts in the NFT's vault to be lost.
This should be rare in practice, as it requires a split to be done essentially at a Lock's end of life. However,this may occur in the wild with a combination of bad luck and network congestion, where a split trans-action is not confirmed until this prerequisite happens to be met, which may be further exacerbated byMEV bots.

6

https://github.com/GovNFT/contracts/commit/9fc40e72faf4dc99a79a12787553c02e58eba078
https://github.com/GovNFT/contracts/commit/db9e856a6e2d9f6b89b447d86fbcea743a44b5e1
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/GovNFT.sol#L255-L259
https://www.desmos.com/calculator/svgqq8gyms
https://github.com/GovNFT/contracts/commit/98bd5469b1440e86693ea721773d5c44edec62e3
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/GovNFT.sol#L257
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/GovNFT.sol#L82
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/GovNFT.sol#L313-L332

This can also result in instances of a parentLockwhose start exceeds its end, which doesn't lead to divisionby zero exceptions, but is still invalid. It is saved by the following early return condition GovNFT.sol#L79-L82 to return 0, instead of underflow which would result in a brick for these cases as well leading to agreater likelihood.
Recommendation: Upon update of the parentLock parameters in _split, the invariant checks from _-

createLockChecks should also be applied on the parentLock. In the above case, either the ZeroAmountor InvalidParameters error should trigger, depending on their respective order. This would act as adefense-in-depth mechanism in case any further such bugs could exist that allow for circumvention ofvalidity checks. Fixing "Split finalization succeeds with non-existent split proposals" should also resolvethis.
Velodrome: The issue has been acknowledged and fixed. This was fixed by the timelock protection refac-toring (see commit 9fc40e72). There is no commit/finalize mechanism anymore and the _split functionenforces the necessary checks
Cantina Managed: Fix confirmed, all codepaths with respect to split functionality will run through _-

createLockChecks as required.
3.2.3 ArtProxy depends on unmaintained Base64 library

Severity: Low Risk
Context: ArtProxy.sol#L10, .gitmodules#L7-L9
Description: As a preface, the ArtProxy contract was not in the scope of the audit, hence no exhaustiveexamination of it has been completed, but this finding affecting it that was noticed is still being docu-mented.
There is a dependency for a Base64 library that is not longer maintained, and has outstanding issues filedon its repository that have not been addressed, such as lacking special characters support and incompat-ibility with certain L2 EVMs. There is also a security advisory likely affecting the library.
Recommendation: The imported OpenZeppelin contracts provide their own Base64 library based off theone by Brechtpd, but it is maintained andmore featureful. Consider dropping this additional dependencyandutilize the one already available, but ensure theOZdependencies are updated to at least v5.0.2, wherethe fix for GHSA-9vx6-7xxf-x967 is implemented.
Velodrome: Applied the recommended fix:

• Update oz to 5.0.2.
• Use OZ's base64 lib.
• Remove the unmaintained base64 lib.

See commit e607f22f.
Cantina Managed: Fix confirmed.
3.2.4 Ambiguous LockNFT valuation due to frontrun& arbitrage opportunities on claim and sweep

Severity: Low Risk
Context: GovNFTTimelock.sol#L5-L14, GovNFT.sol#L137-L191
Description: This issue is specific to GovNFTTimelock contractswhich are intended to providemechanismsto make the NFTs safely placeable on marketsplaces for buyers. The current design only intends to tryand guarantee the totalLocked amount for a specific NFT at its exact time of sale.
In reality, buyers are not just buying the totalLocked, but the entire associated value of the Vault con-nected to the Lock NFT. This associated valuation is ambiguous, as any accrued claim value could befrontrun via claim by either the seller/approved or even arbitraged by the approved NFT marketplace.The same could happen for any airdropped tokens via sweep. Also, a certain value could be placed on thedelegation of tokens, although most delegations should be reversible, while the prior value transfers arenot.
An additional problem with relying only on totalLocked as the valuation basis is that once the cliff forit passes, its value decreases linearly over time. This would mean the longer an NFT is listed, the less its

7

https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/GovNFT.sol#L79-L82
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/GovNFT.sol#L79-L82
https://github.com/GovNFT/contracts/commit/9fc40e72faf4dc99a79a12787553c02e58eba078
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/art/ArtProxy.sol#L10
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/.gitmodules#L7-L9
https://github.com/advisories/GHSA-9vx6-7xxf-x967
https://github.com/advisories/GHSA-9vx6-7xxf-x967
https://github.com/GovNFT/contracts/commit/e607f22fc1921cf6182625c1f09398f83edbe708
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/extensions/GovNFTTimelock.sol#L5-L14
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/GovNFT.sol#L137-L191

nominal value is, possibly requiring multiple instances of relisting from the seller. The balance of a Vault,on the other hand, can stay constant for the duration of a marketplace listing.
In summary, the chosen basis for valuemakes it exceptionally hard for themarket to place an appropriateand safe pricing model on the NFTs as there are still multiple existential frontrun & arbitrage risks thatare not safeguarded against. In the case of no such events occurring, buyers can come out on top forgetting much greater value of the NFT than just their locked tokens, but in other cases buyers may pay aheavy premium in hopes of getting this associated Vault value, but it gets frontrun/arbitraged out, andthey lose (although more sophisticated buyers could implement their own checks against such frontrunsvia their own smart contracts that check the value before finalizing their bid).
Recommendation: Instead of relying on only totalLocked as the valuation mechanism, consider the
commit recommendation in the issue "Current frontrun protection of GovNFTTimelock works only underlimited conditions", and additionally apply that recommendation upon a commit to freeze claim and sweepand possibly cancel delegations, in preparation for a transfer/market listing. This should have the effectof keeping the value of the associated Vault at least what it was at market listing, maybe higher in caseof airdrops or forced send mechanisms. And in turn, would transfer the valuation to be much moreunambiguous and constant, and easier to price for buyers and sellers.
Velodrome: Applied the recommended fix. Applied timelock protection by using freeze/unfreeze on gov-nft functionality (claim, sweep, split) in commit 9fc40e72. The freeze/unfreeze was added to the "full split"in commit db9e856a.
Cantina Managed: Fix confirmed, for cases where the contracts are deployed with sufficiently high time-lock freeze.
3.2.5 Vault logic may not be sufficient to claim airdrops.

Severity: Low Risk
Context: Vault.sol#L35
Description: One reason noted for creating an external contract address as a vault was to be able toaccept airdrops that could be sweep()ed by the owner to another address. The vault may offer limitedfunctionality for this behavior since most airdrops require the owning address to perform some affirma-tive action as the owner address in order to claim the airdrop. The current vault structure assumes thattokens will be externally transferred to the vault address whereby they can be swept elsewhere. Sincethere is no additional functionality to make an arbitrary call to another contract to claim tokens with thisaddress, some airdrops may be unclaimable by the owner.
Recommendation: This is a tricky one. Adding arbitrary claim functionalitywould have significant securityimplications and severely undermine the ability of the contract to enforce the lock. It may just need tobe accepted that claimable airdrop tokens cannot be retrieved by this contract and documented to thateffect.
Velodrome: Applied the recommended fix:

• New split function that "splits the whole amount".
• Effectively creates a new vault.
• Transfers lock's funds to new vault.
• Transfers ownership of old vault to lock recipient.
• Add arbitrary execution function restricted by onlyOwner.

See commit c7bd8981.
Cantina Managed: Fix confirmed as of commit db9e856a, which includes freeze protection on the newfunctionality. Additionally there are caveats where existing Locks should never be topped up with a re-spective Lock token, allowing for these to be potentially withdraw. The client considers topping up ofexisting Locks to be an anti-pattern and not something users should do.

8

https://github.com/GovNFT/contracts/commit/9fc40e72faf4dc99a79a12787553c02e58eba078
https://github.com/GovNFT/contracts/commit/db9e856a6e2d9f6b89b447d86fbcea743a44b5e1
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/Vault.sol#L35
https://github.com/GovNFT/contracts/commit/c7bd89819eb1c8f39142fd4ff5cbc100cef7afa9
https://github.com/GovNFT/contracts/commit/db9e856a6e2d9f6b89b447d86fbcea743a44b5e1

3.2.6 Delegation is not reset when transferring lock tokens

Severity: Low Risk
Context: GovNFT.sol#L158-163
Description: GovNFT lock tokens include functionality to delegate voting power for ERC5805 complianttokens which are held in the associated vault.
function delegate(uint256 _tokenId, address _delegatee) external nonReentrant {

_checkAuthorized({owner: _ownerOf(_tokenId), spender: msg.sender, tokenId: _tokenId});

IVault(_locks[_tokenId].vault).delegate(_delegatee);

emit Delegate({tokenId: _tokenId, delegate: _delegatee});

}

ERC5805 connects delegatees to delegators via the account delegating, see delegate function spec:
This function changes the caller’s delegate, updating the vote delegation in the meantime.

This means that when ERC5805 tokens are transferred, the delegated voting power is also reset.
In the case of the lock tokens being transferred, while the ownership of the held ERC20 tokens is effectivelytransferred, the actual holder of the tokens, the vault, remains consistent. As a result, delegated votingpower is not reset as expected. This results in the recipient of the lock token unintentionally delegatingto the previous delegatee.
Recommendation: According to ERC5805, it's possible to delegate to no one: "_Each user account (ad-dress) can delegate to an account of its choice. This can be itself, someone else, or no one (represented byaddress(0))_". This is also the default case when transferring to an account which has not yet delegated.As such, a reasonable design choice would be to delegate the vault token to address(0) on transfer of thelock by overriding the ERC721 _update function to call vault.delegatewith address(0) as the _delegatee.
Velodrome: The issue has been acknowledged and will not be fixed. The delegate function can be calledby the new owner to choose a delegatee. Keeping this behaviour is also advantageous for a DAO (lock'srecipient) that want to keep the same delegatee in a case where split or transfers are being done throughseveral DAO members.
Cantina Managed: Acknowledged.
3.2.7 Split lock vesting schedules may change as a result of the delay between committing and

finalizing

Severity: Low Risk
Context: GovNFTTimelock.sol#L80-L85
Description: In GovNFTTimelock, we impose a delay between committing and finalizing splits to be createdfor locks. As a result of this delay, it's possible that the initially committed and validated start timestampwas valid at the time of commitment, but is no longer valid at the time of finalization, i.e. it's in the past.In this circumstance, we update the split start to be the current block.timestamp, and adjust the cliffsuch that the cliff ends at the same time.
// Update Split Proposal's timestamps if proposed `start` is in past

if (block.timestamp > params.start) {

splitCliffEnd = params.start + params.cliff;

params.start = uint40(block.timestamp);

params.cliff = uint40(block.timestamp < splitCliffEnd ? splitCliffEnd - block.timestamp : 0);

}

The amount that has vested for a given lock, totalVested, is calculated based on the following logic, ef-fectively totalLocked applied to the current relative amount of time that has passed between start and
end:
(_lock.totalLocked * (time - _lock.start)) / (_lock.end - _lock.start)

This means that by delaying the start timestamp, we'remodifying the slope at which the lock vests at. As aresult, users will not be able to claim as much of the lock as previously expected at any given time beforethe end. We can visualize this in Desmos.

9

https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/GovNFT.sol#L158-L163
https://eips.ethereum.org/EIPS/eip-5805#delegate
https://eips.ethereum.org/EIPS/eip-5805#specification
https://eips.ethereum.org/EIPS/eip-5805#specification
https://eips.ethereum.org/EIPS/eip-5805#specification
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/extensions/GovNFTTimelock.sol#L80-L85
https://www.desmos.com/calculator/lz8enzvdqh

Recommendation: Consider reverting in the case that block.timestamp > params.start, or otherwiseadding documentation which indicates that the slope of split locks may change in this circumstance.
Velodrome: The issue has been acknowledged and fixed. This was fixed by the timelock protection refac-toring (see commit 9fc40e72). There is no commit/finalize mechanism anymore. There is no delay be-tween commit and finalizing splits since the splits are performed normally when it's done in an unfrozenstate.
Cantina Managed: The issue has been fixed by removing the commit/finalize mechanism.
3.3 Gas Optimization
3.3.1 Additional if condition in claim for generally lower gas cost

Severity: Gas Optimization
Context: GovNFT.sol#L146-L151
Description: The current initial conditional
if (claimable > lock.unclaimedBeforeSplit) {

lock.totalClaimed += claimable - lock.unclaimedBeforeSplit;

delete lock.unclaimedBeforeSplit;

includes a number of operations associated with lock.unclaimedBeforeSplit, even though under mostruns, it is likeliest to be 0, rendering them unneeded for those cases, and therefore introducing an avoid-able gas overhead.
Recommendation: Consider refactoring the above portion to:
if (lock.unclaimedBeforeSplit == 0) {

lock.totalClaimed += claimable;

} else if (claimable > lock.unclaimedBeforeSplit) {

lock.totalClaimed += claimable - lock.unclaimedBeforeSplit;

delete lock.unclaimedBeforeSplit;

} else {

lock.unclaimedBeforeSplit -= claimable;

}

Which would make the likeliest branch first in the codepath, without unneeded overhead.
Velodrome: Applied the recommended fix. Refactor the if to the above code block. See commit af892746.
Cantina Managed: Fix confirmed.
3.3.2 Utilization of Clones for Vault and GovNFT deployments

Severity: Gas Optimization
Context: GovNFT.sol#L107, GovNFT.sol#L290, GovNFTFactory.sol#L24, GovNFTFactory.sol#L54, GovNFT-TimelockFactory.sol#L24, GovNFTTimelockFactory.sol#L57
Description: Currently every Vault & GovNFTSplit/GovNFTTimelock contract is deployed standalone.Their respective gas costs in their current state are 330,000 and ~3,500,000. On ETH mainnet, assuminga range of 9 to 72 gwei in gas costs, which has been extrapolated from the past 7 days, this translatesinto a cost ranging from about $10 to $80 for any Locks created, just to deploy the Vault. The cost foreach GovNFT would be ten times that.
The primarily intended network is Optimism, where these costs would translate into the cents currently.
Recommendation: Even though the intended network may be Optimism or other L2s, it would be goodpractice to consider making these contracts viable for more costly networks such as Ethereum mainnet.
Clones are a great usecase here, as all the deployments are essentially copies of logic with one another,while the OpenZeppelin Clones library would help ensure they stay immutable as intended, as long as nometamorphic characteristics exist on their targeted implementations, while saving at least 330,000 gasper such run.
It makes sense for L2s as well, which may be cheap now, but may increase in costs in the future withgreater use, and in general would help respective blockchain sizes stay smaller.

10

https://github.com/GovNFT/contracts/commit/9fc40e72faf4dc99a79a12787553c02e58eba078
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/GovNFT.sol#L146-L151
https://github.com/GovNFT/contracts/commit/af89274634f0149b766ef030845aa9bd007a4c25
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/GovNFT.sol#L107
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/GovNFT.sol#L290
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/GovNFTFactory.sol#L24
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/GovNFTFactory.sol#L54
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/GovNFTTimelockFactory.sol#L24
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/GovNFTTimelockFactory.sol#L24
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/GovNFTTimelockFactory.sol#L57

Velodrome: The issue has been acknowledged and fixed on the vaults. Applied the recommended fix:
• deploy vaults with Clones.

See commit 3ed8873d.
Regarding the deployment of GovNFTs using Clones, we decided to not implement it since we would haveto refactor out the original openzeppelin repository (which would've introduced a lot of changes andwould reduce readability / maintainability).
Cantina Managed: Confirming appropriate commit for optimizing vault deploy using clones.
3.3.3 Lock struct has an unused member

Severity: Gas Optimization
Context: IGovNFT.sol#L20-L32
Description: The Lock struct contains a member which is unused throughout the codebase: minter. Asa result, the Lock struct requires an additional storage slot, resulting in reading and writing to the structbeing more gas intensive than necessary.
Recommendation: Consider removing minter from the struct. If minter is included to be retrieved exter-nally, e.g. by a frontend, consider instead including it as a parameter on the Create event such that it canstill be accessed externally.
Velodrome: The issue has been acknowledged and will not be fixed. Although this parameter is not usedon chain, it is widely used UX/UI wise. We could include an extra parameter on the Create event effectivelyallowing to fetch the minter on chain but it would make its fetching a lot more difficult than checking thelock struct. We understand that this is not ideal but is the best compromise.
Cantina Managed: Acknowledged.
3.3.4 Incrementors can be made unchecked

Severity: Gas Optimization
Context: GovNFT.sol#L217, GovNFT.sol#L296
Description: There exist two instances of incrementors being used which cannot possibly overflow in thecodebase.

• GovNFT.sol#L217:
_tokenId = ++tokenId;

• GovNFT.sol#L296:
splitTokensByIndex[_from][_parentLock.splitCount++] = _tokenId;

We can be certain that these incrementors will never overflow because they are incrementing a uint256variable by one with each execution. In practice this would require the logic to be executed 2256 times,which is practically impossible.
Note: Starting in Solidity 0.8.22, the compiler automatically makes for loop counters unchecked if they can'toverflow. This issue applies separately only to the incrementors which are not for loop counters.
Recommendation: Place the incrementors in unchecked blocks as follows:

• GovNFT.sol#L217:
unchecked {

_tokenId = ++tokenId;

}

• GovNFT.sol#L296:
unchecked {

splitTokensByIndex[_from][_parentLock.splitCount++] = _tokenId;

}

11

https://github.com/GovNFT/contracts/commit/3ed8873dba78b16382fd407ed7b4d9483d11fc53
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/interfaces/IGovNFT.sol#L20-L32
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/GovNFT.sol#L217
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/GovNFT.sol#L296
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/GovNFT.sol#L217
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/GovNFT.sol#L296
https://soliditylang.org/blog/2023/10/25/solidity-0.8.22-release-announcement/
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/GovNFT.sol#L217
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/GovNFT.sol#L296

Velodrome: Applied the recommended fix (add the unchecked blocks in the incrementors). See commitc6c57644.
Cantina Managed: The issue has been fixed as recommended.
3.4 Informational
3.4.1 Sequence off-by-one between tokenId and ERC721Enumerable.tokenByIndex

Severity: Informational
Context: GovNFT.sol#L217, ERC721Enumerable.sol#L60-L68, IERC721Enumerable.sol#L24-L28
Description: tokenId is assigned in a sequential manner, with 1 as its starting index. The contract alsoinherits ERC721Enumerable which exposes tokenByIndex. A tokenId of 1, will have an enumerable indexof 0. If there is only 1 NFT, and a user attempts to insert 1 into tokenByIndex it'll error out.
This is a fine detail that could cause frontend or external services implementation errors resulting in a clas-sic off-by-one error. Additionally may be abused in social engineering cases or scams to sell a less worthNFT, that may be neighbour to a high-value NFT, and tell prospective buyers to check their token using
tokenByIndex. This latter issue is somewhat alleviated in case of marketplace listings, with the associated
ArtProxy contract that should relay some pertinent information back.
Recommendation: For simplification purposes and to minimize chances of an error or confusion, con-sider starting the tokenId with an zero-numbering.

function _createNFT(address _recipient, Lock memory _newLock) internal returns (uint256 _tokenId) {

- _tokenId = ++tokenId;

+ _tokenId = tokenId++;

_safeMint({to: _recipient, tokenId: _tokenId});

_locks[_tokenId] = _newLock;

}

Or consider at least noting this relationship within the documentation of GovNFT and to avoid relying on
tokenByIndex as an indicator for tokenId, as there in general is no expectation for tokenId and tokenIndexto match, as per the ERC721 specification ‘While some ERC-721 smart contracts may find it convenient tostart with ID 0 and simply increment by one for each newNFT, callers SHALL NOT assume that ID numbershave any specific pattern to them, and MUST treat the ID as a "black box".
Velodrome: The issue has been acknowledged and will not be fixed. Given that we currently have amapping thatmaps to a tokenId, wewouldn't be able to differentiate between a null value 0 or the tokenId0.
Cantina Managed: Acknowledged.
3.4.2 Inconsistent OpenZeppelin contract version used

Severity: Informational
Context: package.json#L11C1-L11C40, yarn.lock#L742-L745
Description: The currently linked git submodule pulls OZ v5.0.1, however, the node package manifestand yarn lockfile point to 4.8.0. This discrepancy could culminate in a bunch of issues ranging from buildproblems to developing for the wrong version of contracts depending on what applies to which part ofthe toolchain.
Recommendation: Consider if pulling the dependency with yarn is even necessary. If not, remove it, if itis, synchronize it with git submodules.
Velodrome: Applied the recommended fix. Remove the dependency from yarn completely. See commit669a8fb3.
Cantina Managed: Fix confirmed.

12

https://github.com/GovNFT/contracts/commit/c6c576445df6f257b5fa68013cf1ead11e8b9a2f
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/GovNFT.sol#L217
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/01ef448981be9d20ca85f2faf6ebdf591ce409f3/contracts/token/ERC721/extensions/ERC721Enumerable.sol#L60-L68
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/01ef448981be9d20ca85f2faf6ebdf591ce409f3/contracts/token/ERC721/extensions/IERC721Enumerable.sol#L24-L28
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/package.json#L11C1-L11C40
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/yarn.lock#L742-L745
https://github.com/GovNFT/contracts/commit/669a8fb3d39d964fd255dff1969acd64e5511ff3

3.4.3 Consider expanding invariant testing to handle expected errors.

Severity: Informational
Context: test/invariants/
Description: The current bounding in the invariant handlers force call parameters into expected success-ful paths. While this can make shallower invariant runs find numerical regressions more successfully,consider an invariant process that allows random bounds outside of expected ranges and which handlethe errors expected on given paths. It can be valuable to conditionally handle expected errors and alertif those errors do not trigger.
Recommendation: Consider allowing parameter bounds outside of expected ranges and handling ex-pected errors and reversions in handler catch blocks. This can provide additional insight into the perfor-mance of the contracts when operating outside of expected bounds, but the cost is that more and deeperruns will be necessary to achieve successful call chains.
Velodrome: The issue has been acknowledged and will be fixed. Will will apply the recommended fix:

• Allowing parameters bounds outside expected ranges and handle expected errors.
Cantina Managed: Acknowledged. The fix will be applied in a near future.
3.4.4 Cannot create retroactive vesting

Severity: Informational
Context: GovNFT.sol#L326
Description: Certain large protocols have promised vesting schedules to contributors that begin at acertain timestamp, but due to the heaviness of governance processes the vest is not programmed on-chain until after the vest is intended to begin.
The line if (_startTime < block.timestamp) revert InvalidStart();would prevent creation of a vest-ing accrual period in the past, or, if a new lock is created using the a start at the current timestamp, butnot mined until the next block, the creation of the vest would fail.
Recommendation: Consider whether this check is necessary to create a valid lock.
Velodrome: Applied the recommended fix. Removed the
if (_startTime < block.timestamp) revert InvalidStart();

from _createLockChecks and added it in the _validateSplitParams()

if (params.start < _parentLock.start || params.start < block.timestamp) revert InvalidStart();

See commit c7d0c9bc.
Cantina Managed: Fixed.
3.4.5 startTime != endTime requirement may be too restrictive

Severity: Informational
Context: GovNFT.sol#L330
Description: Lock startTime must not equal lock endTime. Consider a scenario where a funder wishesto unlock all of the funds after a certain timestamp but without a gradual vesting period. This can beapproximated if endTime == startTime + 1, but it may be less conceptually sound to require this.
Recommendation: Consider whether there's a need to revert if startTime == endTime

Velodrome: The issue has been acknowledged and will not be fixed. As said, this can be achieved by
endTime == startTime + 1 . If we remove the if condition we open the door to other issues (for example,division by zero on duration/timeElapsed on the totalVested).
Cantina Managed: Acknowledged.

13

https://github.com/GovNFT/contracts/tree/main/test/invariants
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/GovNFT.sol#L326
https://github.com/GovNFT/contracts/commit/c7d0c9bcbeca1b9d4138b9c3f590575fc3f7f748
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/GovNFT.sol#L330

3.4.6 Shadowed function name

Severity: Informational
Context: GovNFTTimelock.sol#L41, GovNFTTimelock.sol#L91, GovNFTSplit.sol#L26
Description: totalVested is used as a local variable a few times throughout the codebase (see contextabove). This variable shadows the name of an existing function.
function totalVested(uint256 _tokenId) external view returns (uint256) {

return _totalVested(_locks[_tokenId]);

}

This doesn't cause any logical errors but may affect readability and maintainability.
Recommendation: Consider changing the variable name to avoid shadowing the function name, e.g.:
- uint256 totalVested = _totalVested(parentLock);

+ uint256 totalVested_ = _totalVested(parentLock);

Velodrome: Applied the recommended fix (change the variable name to totalVested_). See commit552e0fea.
Cantina Managed: The issue has been fixed as recommended.
3.4.7 Large contract deployments require optimizations.

Severity: Informational
Context: GovNFTFactory.sol, GovNFTTimelockFactory.sol
Description: Factory contracts exceed maximum deployment sizes post-Shanghai. Optimizations arerequired to deploy on mainnet.
Recommendation: Add optimization flags and runs to foundry.toml to document settings.
Velodrome: The issue has been acknowledged and will not be fixed. The recent timelock protectionrefactor (and other changes) decreased the code size. We have no more contracts that exceed 49152bytes. For reference, current contract sizes are:

Contract Size (B) Margin (B)
Address 86 24,490ArtProxy 12,780 11,796Base64 86 24,490Checkpoints 86 24,490Clones 86 24,490ECDSA 86 24,490ERC721ReceiverMock 1,098 23,478EnumerableSet 86 24,490GovNFT 13,935 10,641GovNFTFactory 17,365 7,211GovNFTTimelock 14,955 9,621GovNFTTimelockFactory 18,447 6,129Math 86 24,490MessageHashUtils 86 24,490MockAirdropper 896 23,680MockERC20 1,831 22,745MockFeeERC20 1,934 22,642MockGovernanceToken 7,213 17,363SafeCast 86 24,490SafeERC20 86 24,490ShortStrings 86 24,490SignedMath 86 24,490

14

https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/extensions/GovNFTTimelock.sol#L41
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/extensions/GovNFTTimelock.sol#L91
https://github.com/GovNFT/contracts/blob/b6d277405b5dc09cf3d319fef7e35c16554c5658/src/extensions/GovNFTSplit.sol#L26
https://github.com/GovNFT/contracts/commit/552e0fea5b74452e4a9c0272748dd179cd0b16c1
https://github.com/GovNFT/contracts/blob/main/src/GovNFTFactory.sol
https://github.com/GovNFT/contracts/blob/main/src/GovNFTTimelockFactory.sol
https://github.com/GovNFT/contracts/blob/main/foundry.toml

Contract Size (B) Margin (B)
StorageSlot 86 24,490Strings 86 24,490TestOwner 1,436 23,140Time 86 24,490TimeStore 474 24,102Vault 2,201 22,375

Cantina Managed: Would still recommend having the optimizer on, as it will generally decrease bothdeploy costs and run costs with the default parameter (200), and for more expensive networks can betuned to higher optimization runs for cheaper run costs. Although this isn't security related, but more sooptimization.
Velodrome: We also decided to leave this stale because the default for forge is to have the optimizeron with 200 runs. So, setting the optimizer to true and 200 in the foundry.toml config file won't changeanything. If we get to deploy on other networks we can add that config to the foundry.toml with thenecessary values.
Cantina Managed: Acknowledged.
3.4.8 Missing LICENSE

Severity: Informational
Context: GovNFT/contracts/
Description: License recently modified to GPL-3.0. LICENSE or COPYING file is required to be distributedwith the code per GNU specification.
Recommendation: Add a LICENCE or COPYING file to the repo for license adherence.
Velodrome: Applied the recommended fix (add the license.md file to the project's root). See commit16ecc140.
Cantina Managed: Fix confirmed.

15

https://github.com/GovNFT/contracts
https://www.gnu.org/licenses/gpl-howto.html
https://github.com/GovNFT/contracts/commit/16ecc140b8e5936546129c45ad522e026c799df0

	Introduction
	About Cantina
	Disclaimer
	Risk assessment
	Severity Classification

	Security Review Summary
	Findings
	Medium Risk
	GovNFTFactory/GovNFTTImelockFactory.govNFTs() will fail if registry values grow.
	Split finalization succeeds with non-existent split proposals
	Current frontrun protection of GovNFTTimelock works only under limited conditions

	Low Risk
	parentLock that does a split before its cliff adversely alters its vesting schedule
	parentLock with commitless finalizeSplit bug can be bricked under exceptional circumstance
	ArtProxy depends on unmaintained Base64 library
	Ambiguous Lock NFT valuation due to frontrun & arbitrage opportunities on claim and sweep
	Vault logic may not be sufficient to claim airdrops.
	Delegation is not reset when transferring lock tokens
	Split lock vesting schedules may change as a result of the delay between committing and finalizing

	Gas Optimization
	Additional if condition in claim for generally lower gas cost
	Utilization of Clones for Vault and GovNFT deployments
	Lock struct has an unused member
	Incrementors can be made unchecked

	Informational
	Sequence off-by-one between tokenId and ERC721Enumerable.tokenByIndex
	Inconsistent OpenZeppelin contract version used
	Consider expanding invariant testing to handle expected errors.
	Cannot create retroactive vesting
	startTime != endTime requirement may be too restrictive
	Shadowed function name
	Large contract deployments require optimizations.
	Missing LICENSE

